
NASIL
AGILE
OLUNMAZ
Yalnızca Scrum ile değil; mühendislik,
otomasyon ve insana yatırımla dönüşüm rehberi.

Onur Özcan

Ben Onur Özcan; bankacılıktan e-ticarete,
Garanti’den eBay’e uzanan 15 yılı aşkın
serüvenimde, yazılım dünyasının mutfağında
pek çok proje ile boğuştum. Şimdilerde
Sharpware’in kurucu ortağı ve Bahçeşehir
Üniversitesi’nde öğretim görevlisi olarak,
sektörde "çeviklik" adı altında pazarlanan
hayallerin değil, bizzat sahada işe yarayan
gerçek mühendislik pratiklerinin peşindeyim.
Burada okuyacaklarınız; süslü unvanlar,
ezberlenmiş kılavuzlar veya içi boş sertifikalar
değil; kan, ter ve tecrübeyle harmanlanmış,
"karpuz projelerden" ve bürokrasiden bıkmış
profesyonellere yönelik filtresiz gerçeklerdir.
Hazırsanız, görüneni değil, olması gerekeni
konuşmaya başlayalım.

Onur Özcan

sharpware.co

https://www.linkedin.com/in/onurozc/

İşin sahibini işi yapanlara -gerçekten-
yaklaştırmadan çevik olmayı beklemeyin.

İşin sahibi,

“Benim çok işim var.”,
“Ne istediğimi söyledim ya, benden daha ne
bekliyorsunuz?”
“Bu sorumluluk bana mevcut sorumluluklarımın
yanında ilave sorumluluk olarak verildi, ancak
bu kadar vakit ayırabiliyorum.”
 “Siz yapın, ben sonra UAT’de bakarım”

gibi ifadeler kullanıyorsa ve siz bu durumu
düzeltmek için hiçbir şey yapmıyorsanız çevik
falan olamazsınız.

1. Köprüleri Kurmadan Çeviklik
Olmaz

Çoğunlukla IT ekipleri önceliklendirmenin ne
olduğunun ve bunun öneminin zaten farkındadır.
Gidip müşteriyi doğru düzgün önceliklendirme
yapmaya ikna etmediğiniz, her Sprint Genel
Müdür’den, GMY’den, Dünya Başkanı’ndan araya
işler sokuşturduğunuz sürece bu iş yine
olmayacak.

Ne Yapmalı?

Takımlara gereksiz bir ton eğitim vermek yerine
şunlara odaklanın:

Müşteriye önceliklendirme ve odağın
önemini iyice anlatın.
Takımların odağını sürekli değiştirmenin yan
etkilerini gösterin.
Önceliklendirme yapma ve odağı koruma
konularında onları ikna etmeye çalışın.

Müşteriye çevikliği anlatırken, "bak bir çevik olalım
her istediğiniz hemen yapılacak, işler 8 kat
hızlanacak" şeklinde ifadeler kullanıp,

2. Müşteri Masada Değilse,
Çeviklik Yolda Kalır

3. Kirli Kod ve Noel Baba
Beklentisi
Elinizde kirli bir kod tabanı varsa, kapasitenizin
tamamını müşteri gereksinimlerine ayırmayın.

Her iterasyon kod tabanınızı biraz daha temiz
hale getirmek için çaba harcayın.
Az az da olsa kod kalitesini ve mimariyi
düzeltin.

Kötü kalitenin üzerine kat çıkmaya devam
ederseniz daha hızlı gidemeyeceksiniz. Çevik
falan da olamayacaksınız. Scrum falan sizi
kurtarmayacak. Kalite problemlerinizi şeffaf bir
şekilde ortaya koyup, düzeltmek için efor
harcayın. Siz uyurken bir gece Noel Baba gelip
kötü kodlarınızı düzeltmeyecek. Bu konuda bir
mucize beklemeyin.

mavi boncuk dağıtmayın. Bunun başarılabilmesi
için kendisinin de bir şeyleri değiştirmesi
gerektiğini, çevikliğin sadece IT'nin bazı pratikleri
uygulamasından ibaret olmadığını öğrenmelerini
sağlayın.

Makinaya yaptırabileceğiniz işleri insanlara
yaptırdığınız sürece değişime karşı hızlı adapte
olamazsınız. İnsanlar makinalara göre yavaştır ve
hata yapma (rework'e neden olup, maliyeti
yükseltme) olasılığı yüksektir.

Hız istiyorsanız kaliteyi korumanız (yüksek teknik
borç taşımamanız) ve fikirden çalışan çözüme
ulaştığınız üretim sürecinizde uygun olan şeyleri
insan yerine makinalara yaptırmanız gerekir.

Zor Olan: Yazılım üretimi sürecinde
otomatikleştirilmesi en zor olan kısım
gereksinimlerle ilgili çalışmalardır. “Makina
bana şu projenin gereksinimlerini üretiversin”
demek en azından bugün çok mümkün değil.
Bu kısım hala yoğun insan emeği gerektiriyor
ve gereksinimlerle ilgili çalışmaların
maliyetinden yırtma şansımız pek yok.
Mümkün Olan: Ancak dağıtım ve test gibi
aktiviteleri -tümü olmasa bile büyük bir
bölümünü- otomatikleştirmek mümkün ve çok

4. Hızın Anahtarı: Üretimde
Otomasyon

da zor değil. Hatta kod üretimini bile belli
koşullarda belli araçlarla otomatikleştirmek söz
konusu.

O zaman ne yapıyoruz?

Hızlı gidebilmek için üretim sürecimizde
otomasyonu arttırıyoruz. Gerçek çeviklik için
muhtemelen bir ordu büyüklüğünde olan ve işleri
tekrar tekrar test datası hazırlayıp ekranların
sağına soluna tıklamak olan test ekiplerinizi
“otomasyon” konusunda eğiterek işe
başlayabilirsiniz.

Çeviklik sadece Scrum gibi proje yönetimine
odaklanan light yöntemler kullanılarak elde
edilebilecek bir şey değil. Kendinizi ve takımlarınızı
kandırmayın. Scrum, Kanban gibi yöntemleri iyi
mühendislikle beslemediğiniz, işi yapan
insanların yetkinliklerini geliştirmek için yatırım
yapmadığınız sürece 2 haftalık Sprintlerinizin
sonunda ancak “yine doğru düzgün bir şey teslim
edemedik” dersiniz.

5. "Light" Yöntemler ve
Mühendislik Gerçeği

İnsanların gelişimlerine destek olun. Çalışanlarınız
için 20-30 dolarlık birkaç kitap ve/veya e-
learning içeriklerine yatırım yapmaktan
çekinmeyin. Bu paralar hiçbir şirketi batırmamış
veya zengin etmemiştir. Şirketinizde 10 dakika
turlasanız bunun kat ve katı israf görürsünüz,
onları azaltıp, çalışanların gelişimine yatırım yapın.
İşi yapan insanların gelişimi en az Scrum Master
veya Product Owner’ın gelişimi kadar önemlidir.

Danışmanlar size bu gerçekleri söylemek yerine:

“Scrum master’ları geliştirmeye odaklanalım,"
"Product owner’lar için bir kamp yapalım,"
"Buradaki asıl problem takımlar arası
dependency yönetimi”

falan diyip 1-2 senenizi heba ederler. Şenliklerle,
çarşaf çarşaf CEO mailleri ve “yaşasın biz de agile
oluyoruz” temalı LinkedIn postları ile başlayan
agile dönüşüm insiyatiflerinizin mutsuz son ile
bitmemesi için benden söylemesi.

Sevgili dostum Hamdi Küçük paylaşmıştı bu
görseli daha önce.

Bir çevik dönüşümde takımlara eğitim aldırıp
Scrum veya Kanban kullanmaya başlamalarını
sağlayan şirketler dönüşümün %95'ini
hallettiklerini zannediyorlar. Bu yöntemler sizin
yerinize problemlerinizi fixleyecek sihirli
değnekler değiller. Asıl iş bu yöntemleri
kullanmaya başladıktan sonra farkına varılan
engelleri ortadan kaldırabilmek veya minimize
edebilmek.

6. Liderlik ve Halının Altındaki
Engeller

Özellikle şirketlerin liderlerine çok fazla iş düşer
bu aşamada. Takımlar veya bir Scrum Master size
bir engelden bahsettiğinde bunu halının altına
süpürürseniz, Scrum'ın yapabileceği tek şey o
engelin hala orada olduğunu size göstermeye
devam etmektir. Sevgili liderler, yöneticiler; elinizi
kirletmeden, takımların sorunları / engelleri ile
ilgilenmeden Scrum'ın bir mucize yaratmasını
beklemeyin. Sadece masanızda oturup "işte bizim
çocuklar da eğitim aldılar, 2 haftalık Sprintler
yapıyorlar" dediğinizde çalışanlarınız da
dönüşüme olan inancınızı ve samimiyetinizi
sorgulamaya başlayacaktır.

Takımlarınıza kulak verin ve onlar için mücadele
edin.

Her ne kadar "Agile Software Requirements" isimli
kitaplar/makaleler olsa da bir Agile projenin
gereksinimleri diğer yazılım geliştirme yaşam
döngüsü modellerini takip eden projelerden
niteliksel olarak farklı değildir.

7. Gereksinimlerin Metodolojisi
Olmaz

Software Requirement'ın Agile'ı Waterfall'ı olmaz.
Bununla birlikte, çevik ve geleneksel projeler,
özellikle gereksinimlerle ilgili çalışmaların
zamanlaması ve derinliği ile gereksinimlerin
dokümantasyon şekli açısından elbette farklılıklar
içerir.

Hangi SDLC modelini kullanırsanız kullanın tüm
projelerde doğru işlevselliği doğru şekilde
geliştirebilmek için işi yapacak geliştiricilerin
önüne aynı bilgileri/detayları koymanız gerekir.
İster user story formatı ile ifade edin, ister use
case tekniğini kullanın, isterseniz beyaz bir
tahtada görseller çizin işi yapacak insanlar "ne"
üreteceklerini iyi anlamalıdırlar. Agile
Coachlarınıza veya Scrum Masterlarınıza boş
beleş eğitimler aldırana kadar tüm takım üyelerine
Yazılım Gereksinimleri, Görsel Analiz Modelleri
(UML vb.), Prototipleme Araçları gibi konularda
eğitimler aldırın.

8. Kod Yazmadan Değişebilmek

Değişen müşteri gereksinimlerine hızlı bir şekilde
adapte olabilmek istiyorsanız, kolaylıkla
değiştirilebilir uygulamalara sahip olmalısınız.
Müşterinizden gelen her gereksinim için kod
yazıp, test yapmak zorunda kalıyorsanız çeviklik
konusunda epeyce bir yolunuz var demektir.

Uygulamalarınızın en sık change alan bölümlerini
herhangi bir kod geliştirmenize ve test yapmanıza
gerek kalmadan değiştirmenize imkan veren
yapılar tasarlayın. Imperative yapılar yerine
Domain-Specific Language / Rule Engine gibi
Declarative yapılar kullanmanız değişiklik
taleplerini minimum maliyetle karşılamanızı
sağlayarak çevikliğinizi arttırır.

He tabi bunları tasarlamak ve geliştirmek tecrübe
ve emek ister. Bu yollar biraz daha kan, ter,
gözyaşı gerektirir.

"Çok keyifli bir Retrospective tekniği
denedik, tüm takım üyelerinin çocukluğuna
indik. Meğer bizim Ahmet'in ilkokul
öğretmeni eline cetvelle vurmuş ondan bu
kadar agresifmiş, bu Sprint bunu
öğrendik."

Bunlarla uğraşmak yerine;

şeklinde de devam edebilirsiniz çevik
dönüşümünüze.

Eğer çevik dönüşüm için bir danışmanlık desteği
alıyorsanız danışmanları oyunun içerisine -
gerçekten- dahil edin. Sadece takımlarınıza ve
yönetiminize "ne" yapılması gerektiğini söyleyip,
kendisi hiç bir işe elini sürmeyen danışmanlarla
çevik dönüşüm falan yapamazsınız.

Sınıf eğitimlerinde size ideal kurgular üzerinden
product backlog oluşturmayı, sıralamayı anlatan
arkadaşların çoğu gerçek bir projede "hadi gel
beraber bir product backlog oluşturalım"
dediğinizde kalem oynatamazlar. Size sadece

9. Danışmanlık ve "Hands-on"
Gerçeği

kitabi doğruları söyleyen arkadaşlar çoğu zaman
söylediklerini herhangi bir şirkete uygulamış
durumda değiller.

Acı Gerçek: Takımlarınızla birlikte -hands
on- iş yapmayan, sadece size ahkam kesen
danışmanların tek faydası şirket giderlerinizi
arttırıp daha az vergi ödemenizi
sağlamalarıdır.

Bir de hayatında bir kez dahi bir yazılım projesinin
içerisinde bulunmamış, kariyerini İK, satış gibi
fonksiyonlarda geçirmiş danışmanların yazılım
takımlarınıza fayda sağlama olasılığı yoktur.
Faydanın aksine, işi gerçekten yapan insanlara işin
nasıl yapılması gerektiği konusunda bol miktarda
ahkam kesip canlarını sıkarlar, üretkenliklerini
düşürürler.

Takımlarınız, insanlarınız bu kadar değersiz
değil. Önünüze danışman diye koyulan her insanı
kabul etmeyin.

10. Sertifika Fetişizmi ve Gerçek
Dönüşüm
Sevgili şirketler/teknoloji emekçileri, bir konuda
sizi uyarmak istiyorum. Şirketinizdeki herkese;

PSM, PSPO, PSD, SPS,
PAL, PAL-E, PSK, PSU,
CSM, CSPO, PMI-ACP

sertifikalarını aldırdığınızda dönüşmüş
olmuyorsunuz. Linkedin'de boy boy paylaştığınız
sertifikalar günün sonunda işi yapmıyor. Kağıt
parçalarına odaklandığınız kadar işinizi nasıl
daha iyi yapacağınıza odaklansanız projelerinizin
başarılı olma şansı artar. Sertifikayı veren kurumlar
basılı halini göndermeye bile tenezzül etmiyor, pdf
üretip üzerine isminizi yazıyor, ne kadar değerli
olduğunu buradan anlayabilirsiniz.

Bu platformda bol bol anlatılan çevik dönüşüm
başarılarının içeriğini ben şöyle okuyorum:
Genellikle ilgili şirketin üst yöneticilerinden biri
tarafından sayfalarca yazılmış ve "öyle dönüştük,
böyle dönüştük, bir dönüştük ki parmaklarını
yersin" temalı metin içerisinde herhangi bir sayı
var mı? Evet evet, bildiğin sayı.

Yaw güzel kardeşim anladık dönüştün de, bunun
nasıl bir faydası oldu? Sen onu bir anlatsana bize.

"Çalışan memnuniyeti ve bağlılığı çok arttı"
demişsin mesela, ne kadar çok?

11. Dönüşümün "Fake" Yüzü ve
Sayıların Sessizliği

Çok mu çok, az mı çok? Kime göre çok?

Yazsana oraya ölçtük, şu kadar artmış diye, biz de
görelim çok mu. Ayrıca, madem çalışan
memnuniyeti bu kadar arttı neden bu kadar açık
pozisyon var şirketinizde? Her sene %30
büyümediğinizi hepimiz biliyoruz.

Ya da desene "Çevik dönüşüm sonrası lead time'ı
şuradan şuraya getirdik" diye. Biz de alkışlayalım.
Diyemiyorlar, neden diyemiyorlar? Çünkü
dönüşüm adı altında yapılan işlerin büyük bir
bölümü fake!

"Danışmanlık şirketine bir ton para verdik,
karşılığında pek bir şey elde edemedik"
diyemiyorlar, "Çok güzel dönüştük, pek de güzel
dönüştük." diyorlar.

Siz devam böyle dönüşmeye, aferin!

12. Etkinliklerin Ötesinde Çeviklik

Sevgili takımlar sadece 2 haftalık Sprintler koşup,
Günlük Scrum yaparak agile olamazsınız. Çeviklik
bu kadar basit bir şey değil. Konu hakkında

yazılmış rasgele 2 tane kitap okursanız, çeviklik
namına yaptığınız şeylerin olması gerekenin %1'i
bile olmadığını görürsünüz. Ve sevgili agile
coach'lar, sadece takımlarınızın Planlama, Review
gibi etkinliklerine katılıp tuttuğunuz Excel
dosyasına:

"Ali Ahmet'e laf soktu,"
"Osman Ayşe'nin saçını çekti,"
"Product Owner Saim toplantıya 8 dakika geç
katıldı."

şeklinde notlar tutarak takımlarınızı / şirketinizi
çevikleştirmeniz mümkün değil. Takım üyelerine
"sen de haklısın, seni de anlıyorum" diyip, dile
getirdikleri problemler hakkında hiç bir şey
yapmıyorsanız bence boşa maaş alıyorsunuz. Bu
problemleri çözmek için gerekirse yönetiminizle
çatışmalısınız. Yönetiminizle çatışacak gücünüz
yoksa, bir genel müdür yardımcısına "hayır, böyle
olmamalı" diyemiyorsanız zaten şirketinizde
dönüşüm adına henüz hiç bir şey
başaramamışsınız demektir.

13. SDLC ve Gereksinim Gerçeği

Çevik yöntemleri kullanırken gereksinimlerle ilgili
yapmanız gereken çalışmalar kullanıcı
gereksinimlerini User Story formatı ile ifade
etmekten ibaret değil.

Hangi SDLC modelini kullanıyor olursanız olun,
yazılım gereksinimleri konusunda iyi iş
çıkartmalısınız. Gereksinimleri düzgün bir şekilde
ele almadığınızda rework maliyetleri ile
karşılaşma olasılığınız çok yüksek.

Scrum da kullansanız, V-model veya klasik
waterfall ile de uygulama geliştirseniz kodu
yazacak veya test edecek kişilerin önüne
koymanız gereken bilgiler / detaylar aynı.

"Müşteri ne istediğini şu peçeteye 1 cümle ile
yazdı, nasılsa Scrum yapıyoruz ya, Sprint'e bir
başlayalım da Sprint'in içinde işi detaylandırırız"
yaklaşımı ile geliştirdiğiniz uygulamadan hayır
gelmez.

14. Danışmanlık Pastası ve "0"
Tecrübe
Çevikliğin popüler olması ile beraber pastadan
payını almak isteyen bütün “büyük” danışmanlık
şirketleri şimdilerde Çeviklik Danışmanlığı’na
soyunuyor. Kitaplardan veya katıldığınız 2 günlük
eğitimlerden öğrendiğiniz teorik bilgiler dışında
danışmanlarınızın tecrübesi ne kadar? Kaç tane
projede bu yaklaşımları -gerçekten- kullandınız
mesela?

Cevap: 0

Diğer yandan 10 küsür senedir çeviklik
danışmanlığı adı altına şirketlerin IT
departmanlarına hiç bir değer katmamış “Çeviklik”
danışmanlık şirketleri kendilerine yeni pazarlar
yaratmak için İnsan Kaynakları, Pazarlama, Satış,
Tedarik ve Satın Alma vb. fonksiyonlara “Teknoloji
ekiplerinizi çevikleştirdik, sizi de çevikleştirelim"
vaadi ile eğitim-danışmanlık hizmeti satmaya
çalışıyor.

Siz hayatınızda kaç tane performans süreci kurup
yönettiniz veya kaç tane şirkette satın alma

süreçlerinin içerisinde bulundunuz mesela?

Cevap: 0

Arkadaş bir durun ya...

Hikayemizin kahramanı Ali Bey… Ali Bey A şirketinden
B şirketine transfer olur. B şirketinde bir an evvel
kendini ispatlamak ve patronun gözüne girmek
istemektedir. Bunun için B şirketindeki çalışanlar ile
yaşadıkları problemler hakkında konuşup, yapısal
birtakım değişiklikler yapmak yerine kolay yoldan
gitmeyi tercih eder ve;

32 sınıf eğitim planlanır ve B şirketinin bütün
takımları 3-4 ay içerisinde Scrum kullanmaya
başlar. Retrospective'lerde takımlar sürekli aynı
problemlerden şikayet etseler de, danışmanlık

“Aa siz hala Agile’a geçmediniz mi, bu çağda
Agile olmayan şirket mi kaldı, hemen Agile’a
geçiyoruz” der. Bunun için muhtemelen A
şirketindeyken birlikte çalıştığı ve kendisine
arka çıkacağı garanti olan bir danışmanlık
şirketi ile anlaşır.

15. Ali Bey ve "Dutluk"
Dönüşümü

şirketinin de gazıyla içerde “Şahane dönüştük”
hikayeleri yüksek sesle anlatılır.

Takımlar “Yaw sprint’e aldığımız bir PBI için 7500
satır stored prosedürün içerisinde
değiştireceğimiz satırı bulana kadar sprint bitiyor.”
diye feryat etseler de Ali Bey bunları pek duymaz
ve patrona “Ben yokken buralar hep dutluktu, ben
geldim Agile olduk” diye hikayeler anlatarak
koltuğunu 2 sene daha sağlama alır.

1-2 Linkedin postu, bir de konferans/meetup
konuşması yaptı mı Ali Bey’den kralı yoktur.

Çevik dönüşümü illa organizasyonel dönüşüme
bağlamak zorunda değilsiniz. Çeviklik namına size
sadece Scrum anlatan danışmanlar 5-10 günün
sonunda ellerinde malzeme kalmayınca konuyu
hemen "çevik organizasyon"a getirir;

Chapter,
Tribe,
Guild

16. Spotify Modeli mi, Müşteri
Değeri mi?

ve buna benzer bir ton kavramla kafanızı karıştırır,
bir şeyleri ıskaladığınız hissiyatı yaratırlar.

Bu meselenin özünde müşteriyi merkeze koymak
vardır. Natamam çözümlerden öğrenmek vardır.
"Benim dediğim doğru" diye diretmek yerine
veriye bakıp, "müşteri bunu istiyor, bunu üretelim"
diyebilmek vardır. Karşılanmamış her müşteri
ihtiyacını kendine dert edinmek vardır. Bu "n" farklı
organizasyonel yapılanma ile yapılabilir. İlla
Spotify'ın modelini kopyalamanıza gerek yok.

Siz tribe'lara, chapter'lara kafa yormaya devam
edin. Dönüşümü neden yaptığınızı unutup,
dönüşüm için dönüşüm yapıyorsunuz. Olay
dönüşümü müşteri için yapabilmekte... Dönüşüme
başladığınız tarihten bugüne pazar payınız, toplam
abone sayınız nereden nereye gelmiş ona da bir
bakın...

Bir Telekom Operatörü Hikayesi: Misal, adını
zikretmeyeceğim bir telekom operatörü her
fırsatta çıkıp tribe'lardan, chapter'lardan
bahsedip, nasıl dönüştüğü konusunda ahkam
kesiyor. Gelgelelim ben bu operatörün mobil
uygulamasından son faturamı pdf olarak
download edemiyorum.

Çevik dönüşüm kapsamındaki eğitimlerinizi illa
"Gamify" etmenize gerek yok. Evet biliyorum
böyle isimler, içerikler havalı görünüyor ancak bu
eğitimlere katılan insanların "yetişkinler" olduğunu
düşünürsek onlara bir şeyler öğretmek için illa
oyun oynatmanız gerekmez. Eğitimi alan insanların
çoğunluğu mühendislik formasyonuna sahip,
muhtemelen 2 üniversiteden mezun veya yüksek
lisans derecesine sahip profesyoneller.

Doğru düzgün bir içerikle meseleyi anlamalarını
sağlamak yerine 2 günlük eğitimin yarısında geyik
oyunlar ile çalışanlarınızı anca eğlendirirsiniz.

Şimdi kalkıp bana ama hocam "uygulama" da
önemli diyenler olur. Bu işin uygulaması
saçmasapan lego simülasyonları veya lastik top
oyunları ile olmaz. Çeviklik gibi derinliği olan bir
konsepti "lego" simülasyonu gibi basit bir şekilde
anlatarak hem katılımcılarınızın zekasını
küçümsüyorsunuz hem de konuyu sığ
gösteriyorsunuz. 2 günlük eğitimde bütün olayı
timeboxed iterasyonlarla çalışmadan ibaret

17. Eğitimde "Gamify" Tuzağı ve
Ciddiyet

göstermek bu konuyu çok hafife aldığınıza işaret
eder.

Agile yöntemleri kullanırken gereksinimlerin ortaya
çıkarılması, analizi, ifade edilmesi ve gözden
geçirilmesi; ürün sahibi, analist, kilit paydaşlar ve
geliştiricilerin işbirliğine dayalı bir ekip sürecidir.

Bazen PO olarak bir iş analisti
konumlanabilirken, bazen PO'nun kullanıcı
hikayelerini önceliklendirmesine ve
detaylandırmasına yardımcı olmak için takım
içerisinde bir iş analisti bulunabilir.

Her iki durumda da diğer kilit paydaşlar ve
takım üyeleri de "Refinement" (veya adına her
ne diyorsanız) aktivitelerine dahil olmalı ve işi
talep edenlerle ile işi yapacaklar arasında
"ortak bir anlayış" oluşması sağlanmalıdır.

Halen yazılım geliştiriciler "analist veya PO yazsın
önüme koysun", paydaşlar "UAT veya Review
dışında bizden bir katılım beklemeyin"
kafasındaysa daha çok yolunuz var demektir

18. Gereksinimler Bir Ekip İşidir

Organizasyonunuzdaki insanlar "birbirleri için
doküman üretmek" yerine "birlikte çalışarak değer
üretmeyi" öğrenmeli.

Bir takımın motivasyonunu düşürmenin en iyi yolu
nedir?

Yaptıklarının (geliştirdikleri ürünün) müşterilerinizi
nasıl etkilediğini görmelerini engelleyin. Aynı
şekilde, geliştirdikleri ürünün şirketin vizyonu ve
hedefleri ile nasıl bir ilişki içinde olduğunu
bilmemeleri de takım için motivasyon kırıcıdır.

Üretilen değer ve amaç ile ilgili bu şeffaflık ve
hizalanma sorunları, bir takımının kendisine
organizasyonel hedeflere hizmet eden net
hedefler belirlemesini zorlaştırır.

Bu zorluk, sprint/iterasyon hedeflerine kadar
sirayet eder.

Sprint hedefleri olmadan takımlarınızda aciliyet
hissi uyandıramazsınız ve onlara ilham
veremezsiniz.

19. Takımın Yakıtı: Amaç ve Etki

Kimin kaç saat efor harcadığından önce
takımlarınızın yarattığı etkiyi onlara görünür kılın
ve organizasyonunuzun hedeflerini tüm takımların
bildiğinden emin olun.

Müşteri / iş birimi (adına ne dersen) bir proje
yaptıracak. Tam ne istediğini bilmiyor. (Yeri
gelmişken şunu da söyleyelim: Müşteri tam ne
istediğini bilmek zorunda değil)

Bir yerlerden de duymuş Agile diye bir şey var
istediğin şekilde değiştirebiliyorsun gereksinimleri.

"Heh, tamam işte, ne güzel, bu tam bana göre.
Bizim proje de Agile olsun" diyor.

Agile olsun ama gelgelelim süresi belli olsun, sabit
olsun. Yeter mi yetmez. Parası / bütçesi de belli
olsun, "bana sonradan bu istediğin CR'dır, buna ek
para, buna da ek süre" deme diyor.

Yani, projenin kapsamı değişime tabi ama süresi
ve parası değişime tabi değil.

20. Sabit Süre, Sabit Bütçe,
Değişken Kapsam?

Sevgili müşteri(ler) / iş birim(ler)i, sen bu ikisini de
sabitlersen, projede değişim olunca bunun sonucu
ne olur? Ben size söyleyeyim, işi yapacak firma /
takım fazla mesai yapsın, gecesini gündüzüne
katsın, parasını da almasın.

Özetle, çeviklikten anladığınız: “Çevik olalım
dediysem, işi yapacak takım / firma sen çevik ol
demek istedim!”

Aslında, çeviklikten anlamanız gereken: “Projede
değişim her zaman olabilir. Çevik olmak
istiyorsanız işi yapacak takımın değişimin
maliyetini minimuma indirmek için doğru üretim
pratiklerini kullanmasına, buna efor harcamasına
izin vermeniz gerekir. Değişimin maliyeti kendi
kendine düşmez, bunun için takımın çaba
harcaması gerekir, kaliteli üretim yapması gerekir.
Bunun yanında çeviklik için takımın üretim
pratiklerini değiştirmesi yetmez. İşin sahibi olarak
sizin de yaklaşımınızı değiştirmeniz gerekir. Doğru
üretim pratikleri ile değişimin maliyetini ne kadar
düşürmeye çalışırsanız çalışın değişim hiçbir
zaman sıfır maliyetle gerçekleşecek bir şey
değildir. Gereksinimlerde değişebilmeyi
istiyorsanız bunun zaman ve para maliyetine de

katlanmalısınız. Ya da istediğiniz değişimin
gerçekten gerekli olup olmadığını / faydasını daha
iyi sorgulamayı öğrenmelisiniz. Bazen “madem
maliyeti bu kadar hepsini yapmayalım (descoping),
yarısını yapalım ” demeyi öğrenmelisiniz.”

İyi çalışan ve sürekli teslimat yapan bir IT tek
başına başarılı iş sonuçları için yeterli değildir.
Başka bir deyişle, sürekli teslimat ve Agile/DevOps
vb. tüm insiyatifler, iş sonuçlarını iyileştirmiyorsa
önemsizdir.

İş sonuçları, yalnızca IT içerisindeki geliştirme ve
operasyon ekiplerinin birlikte daha iyi çalışmasını
sağlayarak gelişmez. Tek başına IT ekiplerini
çevikleştirerek organizasyonu çevikleştiremezseniz.

Çevikliğin işe yaraması ve iş sonuçlarını iyileştirmesi
için tüm birimlerin birlikte daha iyi çalışması gerekir.
Her birimin tek başına düzgün çalışması gereklidir
ancak yeterli değildir. Birimler arasındaki
etkileşimleri geliştirmek, organizasyonel çevikliği
artırır.

21. İş Sonuçları İçin IT’nin
Ötesine Geçmek

İş fonksiyonları ve BT iyi bir şekilde işbirliği
yaptığında, ürün veya çözüm konseptinden nakde
(veya şirket içinde ürünün/çözümün
benimsenmesine) kadar ödüllendirici bir yolculukla
sonuçlanır.

Bu yolculuk, pazardan ve değişen teknoloji
ortamından kaynaklanan zorluklarla karşı karşıya
kalabilir, ancak gerçekten bir Çevik dönüşüm
geçirdiyseniz iç faktörler nedeniyle hayal
kırıklıkları ve gecikmelerden uzak olacaktır.

Bu yolculukta doğasında var olan zorluklarla başa
çıkmak için oldukça iyi anlaşılmış yöntemlere
sahibiz. Ancak Çevik dönüşüm diye adlandırılan
insiyatiflerin büyük bir çoğunluğu maalesef bu
yöntemlerin pek çoğunu es geçiyor.

Yalın ürün keşif teknikleri yolculuğun ilk
kilometrelerinde size yardımcı olur.

Benzer şekilde sürekli teslimat ve DevOps,
yolculuğun son kilometrelerinde size yardımcı

22. Uçtan Uca Çevik Değer
Zinciri Yönetimi

olur.

Mühendislik pratiklerini de içeren çevik yazılım
geliştirme, aradaki kilometreleri katetmek için
neredeyse ana akım haline geldi.

Görüldüğü gibi işin doğal zorluklarını aşmak için
bir arada kullanılması gereken çok fazla
yöntem/pratik var. Bu nedenle çevik dönüşümü
Scrum uygulamaktan ibaret zannetmek büyük bir
hata. Gerçek bir dönüşüm çok daha fazlasını
gerektiriyor ve maalesef bu pek çok kurum için
zannedildiği gibi 3-5 sınıf eğitimi ve bir süre
alınacak danışmanlık ile 6 ayda gerçekleşebilecek
bir şey değil.

Dahası işin doğal zorlukları dışında,
organizasyonel zorluklar da var. Bu
organizasyonel zorluklar, yolculuğun her
kilometresine nüfuz ederek ve tüm dönüşüm
çabalarının başarısını tehdit edebilir.

Bazı Çevik(Agile) fanatikleri (çoğunlukla konu
hakkında son derece yüzeysel bilgisi olan
arkadaşlar), önceki adımlara dayanan ardışık bir
süreç fikrine şiddetle karşı çıktıkları için waterfall
gibi modellere saldırmayı severler.

Zannediyorlar ki, çeviklik olayın içine balıklama
atlamak ve bir şeyleri direk kodlamaya başlamak
anlamına geliyor.

Çevik yöntemleri kullanırken de halen "define
before design" ve "design before code" dediğimiz
prensipleri işletmelisiniz.

Çeviklik gereksinimler veya tasarımla ilgili
faaliyetleri üstünkörü yapmayı değil; bunları
sadece daha küçük adımlarla yapmayı savunuyor.

Sevgili hocam Yaşar Safkan'ın ekteki blog
postunda dediği gibi, Çevik olmaya çalışan sevgili
takımlara verilecek tavsiye şudur ki:

23. Çevik Dönüşümde
Mühendislik Prensipleri

"Bu ahval ve şeraitte dahi, birinci vazifen, kodunu
tasarımsız yazmamak, kodun mimari yapısını iç ve
dış tüm baskılara karşı korumaktır. Muhtaç
olduğun kudret, ellerinin altındaki klavyede
mevcuttur."

Testi projenin sonuna bırakarak,
 Entegrasyonu "ayın sonunda yaparız ya"
diyerek,
Kodlama başlayınca gereksinimlerle ilgili
çalışmaları durdurup, geri bildirim almaktan
vazgeçerek

çevik olamazsınız.

Takım üyelerini birbirinden izole etmek
tehlikelidir.

Daha fazla çıktı vermek uğruna geliştiricilerinizin
birbirlerinden tamamen yalıtılmış olarak kod
yazmasına izin vermeyin.

24. Çeviklik İllüzyonu

25. Sürekli Kod Gözden Geçirme
Kültürü

Takımdaki herkes, diğer arkadaşlarının yazdığı
kodları okumak için zaman ayırırlarsa, kodun
okunabilir, anlaşılır olduğundan ve kaliteyi düşüren
keyfi kod yazmadıklarından emin olabilirler.

Kodu ne kadar sık okursanız o kadar iyidir. Devam
eden bu kod gözden geçirmeleri, yalnızca kodun
anlaşılır olmasına yardımcı olmakla kalmaz, aynı
zamanda hataların da tespit edilmesini sağlar.

Takımınız bir sorunla karşılaştığında ilk yaptığı şey
nedir?

Bu durumlarda soruna neden olan kişiyi, "suçluyu"
bulmak ilk önceliğiniz olmalı, değil mi?

Cevap: Hayır!

Dönüşüm için sarf ettiğiniz tüm çabalar
sonucunda halen soruna kimin neden olduğunu
belirlemek ilk önceliğiniz ise çevikliği
anlamamışsınız demektir. Her zaman eldeki
sorunu çözmek en önemli önceliktir.

26. Hata Aramaktan "Öğrenen
Organizasyon" Yapısına

Takımlarınızın bu tarz durumlarda verdiği ilk
tepkinin ne olduğunu dikkatlice inceleyin. Sorunun
çözümüne hiç bir katkı sağlamayan "günah
keçisini" mi arıyorsunuz? Yoksa eldeki problemi
bir an evvel nasıl çözebileceğinizi mi
tartışıyorsunuz? Elbette, problemi çözdükten
sonra problemin tekrar yaşanmaması için neler
yapılabileceğini de masaya yatırmalısınız.

Gerçek çeviklik sadece hazır yöntemleri
uygulayarak elde edilmez. Takım üyelerinin tutum
ve davranış değişikliği ile dönüşebilirsiniz. Zor olan
kısım burasıdır.

Agile Manifesto'nun tanımladığı değerleri ofisin
duvarına yazıp bütün çalışanlara imzalatınca
dönüşmüş olmuyorsunuz. Önemli olan ofisin
duvarlarının değil, insanların kafasının o
değerlerle, ilkelerle doldurulmasıdır.

Başta yönetiminiz o imzaladığı değerlere uygun
davranıyor mu acaba? Veya çalışanlar altını
imzaladıkları o değerlere uygun davranmadığında
ne yapıyorsunuz? "Bunu imzalamıştın, sözleşmeye

27. Duvarları Değil, Kafaları
Değiştirin: Agile ve Şekilcilik

Şu şekilciliği bir kenara bırakın artık!

Farklı sektörlerden bir sürü şirketin içerisine girmiş
biri olarak benim gözlemim şudur:

"Bir şirket ofisinin duvarlarına büyük harflerle ne
yazıyorsa o olay o şirkette yoktur."

Mesela duvarda kocaman "TRUST" yazan
şirketlerde emin olun kimse birbirine
güvenmiyordur, herkes arkasını kollamaya
odaklıdır. Duvarında kocaman "TRANSPARENCY"
yazan şirketlerde mutlaka gizli ajandalar vardır.

Duvarları değil, kafaları değiştirin.

Kod üzerinde değişiklik yapmadan önce mevcut
kodun ne iş yaptığını anlayın.

Evet üzerinizde zaman baskısı var ve kod üzerinde
hızlıca yaptığınız bir düzenleme ("şuraya bir if eklersek

28. Önce Anla, Sonra Değiştir:
Kod Bataklığı Tehlikesi

aykırı davrandın, eve gelip buzdolabını alacağız"
mı diyorsunuz?

şuraya bir if eklersek halloluyor abi" veya "şu
flaggedCells değişkenine 1 ekledik mi çözeriz bu
işi") eldeki hatayı fix edebilir. Ancak, kod
anlaşılmadan yapılan bu hızlı fixler bir süre sonra
kodu bataklığa çevirir.

Gerçek bir çevik takımdaki geliştiriciler bir sonraki
adıma geçecek ve bu if'in veya +1'in neden gerekli
olduğunu ve daha da önemlisi başka nelerin bu
değişiklikten etkilendiğini anlamaya çalışacaktır.

Takımınız bunu yapmadığında kod tabanınız sizi
bir bataklık gibi içine çekmeye başlar ve ciddi
vakit kayıplarına / kalite problemlerine neden olur.

Sonra bana şöyle
gelmeyin:

"Scrum'a ilk
başladığımızda projemiz
yeniydi ve Sprint'lerin
sonunda bir sürü iş
teslim ediyorduk, 1
senenin sonunda
velocity yarı yarıya
düştü, niye böyle oldu?"

Müşteri aynı müşteri, çalışan aynı çalışan, yönetici
aynı yönetici... Kafaların içinde, yetkinliklerde
değişen en ufak bir şey yok ama maşallah iş
ambalaja gelince beylik lafların bini bir para.

O sizin "transformasyon" dediğiniz şey ünvanları,
isimleri değiştirmekle olmaz; insanları/kafaları
değiştirerek, geliştirerek olur.

Bakın Scrum'ı ortaya koyan iki kişiden biri olan ve
entegre sağlık hizmetleri bilgi sistemlerinin lider
sağlayıcısı olan PatientKeeper, Inc.'in eski CTO'su
Jeff Sutherland, şirketteki ürün sahiplerinin
(Product Owner) gerekli niteliklerini ve yetkilerini
nasıl açıklıyor:

Takımlara "squad", domainlere "tribe" veya
"garage", uzmanlık alanlarına "chapter"
dediğinizde daha çevik olduğunuzu mu
düşünüyorsunuz?

29. İsimler ve Gerçekler

"[Bir ürün sahibi] bir alan uzmanı, tercihen
haftada birkaç gün Boston'ın önde gelen

hastanelerinden birinde pratisyen hekim
olmalıdır… Bir yazılım mühendisliği uzmanı
olmalı, tercihen kendisi bazı uygulamalar
yazmış olmalıdır…

Kullanıcı hikayeleri (user stories), use cases
ve genel olarak yazılım spesifikasyonları ve
özellikle sağlık hizmetleri konusunda uzman
olmalıdır… Gereksinimleri ortaya çıkarmak
müşterilerimiz ve satış ekibimiz ile gerçekten
yakın çalışmalı ve yeni işlevlerin prototiplerini
test etmek için uzman doktorları işe almalıdır.
[Ürün sahiplerimiz], genellikle geliştiriciler ve
diğer ürün sahiplerinden başka birinin
yardımına ihtiyaç duymaz. Bu pozisyon için
yaptığımız ilk birkaç işe alım bunu
sağlayamadı. Tekrarlanan eğitim, koçluk ve
doğru kişiyi işe almak, bunun
gerçekleşmesini sağladı."

Demek ki neymiş?

Birine "sen Product Owner oldun" demekle iş
bitmiyormuş. Sen dersin de, bakalım o dediğin kişi
gerçekten onun içini doldurabiliyor mu? Eskisine
göre bir şeyleri farklı yapıyor mu? O rolün içini

doldurmak için kendisini geliştiriyor mu?

Aynı şekilde krediler müdürlüğü yerine artık
"krediler garajı" demekle, "dijital varlıklar tribe'ı
kurduk" demekle bu işler olmuyor maalesef.
Keşke o kadar kolay olsaydı.

Sahi ne diyordu rahmetli Barış Abi?

Herhangi bir değişikliğe girişmeden önce
yönetiminizden onay ve destek almalısınız.

Neden?

Çünkü çalışanlar kendilerine söyleneni yapmaya
eğilimlidirler, ta ki bu çalışanlar aslında başka bir
şey yaptıklarında ödüllendirileceklerini anlayana
kadar.

Çalışanlara ne yapacaklarını söyleyenler

"Altın çöpe düşse değerin kaybeder mi?
Tenekeyi parlatsan hiç çeyrek altın eder mi?"

30. Yönetim Gerçekten İstiyor
mu?: Değişimin Anahtarı

yöneticilerdir. Çalışan ödüllerini belirleyen kişiler
yöneticilerdir. Değişim ancak yöneticiler “Evet,
bunu yapmalısın” dediğinde başarılı olur ve daha
sonra değişimin gerektirdiklerini yapan çalışanları
ödüllendirir.

Bu nedenle, sizin ve ekibinizin çevikliği başarılı bir
şekilde benimsemesi için önce yönetiminizi bunu
desteklemeye veya en azından engellememeye ve
ekip üyelerini bunu denediklerinden dolayı
cezalandırmamaya ikna etmelisiniz.

Kendiniz bir yöneticiyseniz, yönetim zincirinizin
çevik yaklaşıma karşı çıkmamasını sağlamalısınız.

Şimdi tekrar düşünün bakalım. Yönetiminiz gerçekten

Burada kilit nokta şu:

Çevikliği destekler gibi görünen yöneticilerin
çoğu kendi alışkanlıklarını da değiştirmeleri
gerektiği gerçeği ile karşı karşıya
kaldıklarında çoğunlukla bu değişimden
vazgeçerler, hatta ellerine geçen her fırsatta
bunun altını kazmaya başlarlar.

çevikliği destekliyor mu? Bu fikirleri gerçekten
satın aldı mı?

Bu soruya yanıtınız "Dönüşümünüz başarılı
olacak mı?" sorusunun da yanıtını bulmanızı
sağlayacak.

Yanlış!

Ekibinizde farklı yeteneklere, deneyime ve
becerilere sahip insanlar var. Her insanın farklı
güçlü yönleri ve uzmanlığı var. Farklı yeteneklerin
ve geçmişlerin bu karışımı, öğrenme için ideal bir
ortam yaratır.

Bir takımda, kişisel olarak çok şey biliyor olmanız
yeterli değildir. Ekibinizin diğer üyeleri de bu kadar
bilgili değilse, ekip olabileceği kadar etkili değildir:

31. En İyisi Olmak Yetmez
"Takımlarınızdaki kişiler bildiklerini
paylaşmayıp, bilgiyi kendine saklasın.
Sonuçta takımdaki en bilgili kişi olmak onlar
için büyük bir avantaj. En iyisi kendileri
olduğu sürece diğer kaybedenleri göz ardı
edebilirler."

iyi eğitimli ve birbirinden öğrenen bir ekip daha
iyi bir ekiptir.

Sizin veya ekibinizdeki bilgili birinin ekibin geri
kalanının hızlanmasına yardımcı olabileceği alanları
bulun. Bu, konuların projelerinize nasıl
uygulanacağını tartışabilmeniz için ek bir avantaj
sağlar.

Adına ister "lunch&learn", ister "BBS", ister
"öğren molası" deyin, bu takım üyelerinin
birbirlerinden öğreneceği oturumlarının faydası
büyüktür.

Scrum Guide diyor ki;

Yani bu kişi takımının nasıl daha efektif
olabileceğine kafa yormalı, takımı daha üretken

32. Sadece Toplantı Yöneticisi
Değil: Scrum Master ve Etkinlik

"Scrum Master, Scrum Takımı’nın
etkinliğinden (effectiveness) sorumludur.
Bunu, Scrum Takımı'nın pratiklerini Scrum
çerçevesi dahilinde iyileştirmesini sağlayarak
yapar."

kılabilecek pratikleri araştırmalı, öğrenmeli ve bu
pratikleri takımının uygulamaya koyabilmesi için
takıma öğretmeli.

Takımını daha üretken hale getirebilecek pratikleri
bilmeyen, öğrenmeyen ve bunları öğretmeyen
Scrum Master işini yapmayan Scrum Master'dır.

Olay sadece "arkadaşlar Daily'nin timebox'ı 15
dakika" veya "Bugün yeni bir retrospective tekniği
deneyeceğiz" demekten ibaret değil.

Scrum Master'lık öyle herkesin yapabileceği bir
şey de değil.

"Bizim ekipte çok istekli yeni mezun bir arkadaş
vardı, onu Scrum Master seçtik" şeklinde karar
verilebilecek bir rol hiç değil.

Türkiye'de "Agile Coach" ünvanına sahip kişilerin
birçoğu koyu bir Scrum fanatiği.

Scrum'ı ölesiye savunuyorlar, Scrum Guide'a

33. Scrum Fanatizmi: Kutsal
Kitap mı, Araç mı?

kutsal bir kitap gibi bakıyorlar. Guide'da yer alan
cümlelerin anlamları üzerine falan saatlerce
tartışıyorlar. Konu hakkında meetuplar düzenleyip,
Scrum Master rolü veya Product Backlog yönetimi
hakkında konuşuyorlar.

Scrum Guide'ı yazmış olan 2 kişinin bile bu metin
üzerine bu kadar kafa yorduklarını
düşünmüyorum.

(XP gibi) alternatif herhangi bir Agile yöntem ile
çalışmamışken bu arkadaşların nasıl bu kadar
Scrum fanatiği olabildiklerini de çok merak
ediyorum.

Herhangi bir alanda bir şeyi bu kadar tutkuyla
savunabilmek için o alandaki diğer bütün
alternatifleri öğrenmiş, hatta denemiş olmak
gerekir.

Bir konuda "fikir" sahibi olmadan önce "bilgi"
sahibi olmak gerekiyor.

Ömrünüz boyunca tek bir otomobil modeli
kullanıp, bunun diğer tüm otomobillerden
"daha iyi" olduğunu nasıl iddia
edebilirsiniz?

Hepi topu 14 sayfa kılavuzu olan Scrum'ı bu kadar
abartmak yerine Agile dünyasında başka ne var ne
yok, biraz derinlere inin derim. Hatta sadece Agile
dünyasındaki şeylerden de öte yazılım
mühendisliğinin iyi uygulamalarını öğrenmek
için çaba sarf edin.

Scrum sadece basit bir çerçevedir.

Takımlarınızdaki insanlar, Scrum'ın getirdiği
rollerin, etkinliklerin ve eserlerin arkasındaki esas
güçtür.

Takımlarınızda şikayet ve suçlamayı kırmızı
bayraklar olarak görmelisiniz.

34. Scrum Sadece Bir Çerçeve

35. Kırmızı Bayraklar: Şikayet ve
Suçlama Kültürü

Takımınızdaki insanlar işbirliği yapmıyor,
birbirlerine yardım etmiyor, destek vermiyor
ve kendilerini geliştirmek için zorlamıyorlarsa,
müşterilerinize hizmet etme şeklinizi
geliştirmek için çok önemli bir fırsatı
kaçırıyorsunuz demektir.

Sürekli şikayet eden insanlar/takımlar sorunların
çözülmediği, sadece tartışıldığı bir olumsuzluk ve
çaresizlik kültürü oluşturur.

Sohbeti, takımınızın tartıştıkları engel veya soruna
nasıl sahip çıkabileceğine yönlendirin.

Bu, uzun vadede çok daha üretkendir ve ekibinizin
kendi kendini organize etme ve karmaşık problem
çözme gibi önemli becerileri uygulamasına
yardımcı olur. Takımlarınızın sorunlarına sahip
çıkmalarına ve sorunlarını yaratıcı bir şekilde
çözmenin yollarını bulmalarına yardımcı olun.

Ürün geliştirme sürecinde aldığınız kararları ve bu
kararların arkasındaki nedenleri kayıt altında
tutun. Hepimizin bildiği gibi insan belleği
güvenilmezdir.

Şikayet etmek, bir takımı çözüme
yaklaştırmaz.

Konuşmanın bir şikayet oturumuna
dönüştüğünü görürseniz, takımınızı tekrar
problem çözmeye yönlendirin.

36. Hafızaya Güvenmeyin!

Takımınızın tuttuğu bir günlük (journal), herkesin
okuyup yazabildiği bir Wiki, çok sevimli olmasa da
bir e-posta izi veya bir issue tracking uygulaması
gibi opsiyonların tümü kabul edilebilir; yeter ki
seçtiğiniz yöntem çok ağır veya külfetli olmasın.

Bilgisayar bilimcileri aynı cümleyi "Bazen 1 görsel
1024 kelimeye bedeldir." şeklinde kurar. O yüzden
serinin 37. post'u sadece bir görsel.

İşte size "Nasıl
Agile
Olunmaz?"ın
1024 kelimeye
bedel özeti:

Çeviklik, "sadece kendi aranızda konuşun,
hiç bir şeyi dokümante etmeyin" gibi bir şey
söylemiyor.

37. Bazen 1 Görsel 1000
Kelimeye Bedeldir

38. Scrum + JIRA Yeterli Değil

Sadece "Scrum + JIRA" ile çevik olamazsınız.

Bunların ikisini hiç bilmeyen/kullanmamış bir
takımda uygulamaya koymak 2-3 günde
yapılabilecek bir şey. (Hee tabi bunu da abartıp 1
senede anca bu noktaya gelen şirketler de yok
değil.)

Bu kadar basit olsaydı Salesforce'un yaptığı gibi,
American Airlines'ın yaptığı gibi gerçek çevik
dönüşümler en az 3-4 sene sürmezdi, değil mi?
Takımların teknik yetkinliklerini iyileştirmeden,
legacy uygulamalarınızı adam akıllı refactor
etmeden, yönetimin kafa yapısını değiştirmeden
"Scrum + JIRA" ile elde edebileceğiniz tek şey
şudur:

Bu işi yapamadığınızı 2 haftada 1 görmek (belki
de görmemek) olur.

Çevik dönüşümden geçtiğini zanneden pek çok
kurumdaki "gerçek durum" görseldekinden
ibarettir.

Ortalığı renkli post-itlerle donatarak, "şöyle böyle
dönüştük" diye havalı sunumlar yaparak olmuyor
bu işler.

Çalışanların seslerinin duyulmadığı,
Kararların hiyerarşinin en tepesinden alındığı,
Değeri üretenden çok, değeri üreteni yönetene
değer verildiği,

ortamlarınızı değiştirmediğiniz sürece anca ortalığı
rengarenk gibi gösterip göz boyarsınız.

39. Renkli Post-itler ve
Gerçekler: Göz Boyama Sanatı

Rakibiniz bir dönüşüm projesi başlattığı için veya
bir danışmanlık şirketi size bu dönüşümü
yapmanız gerektiğini söylediği için başlattığınız
dönüşüm projesinden hayır gelmez.

Öncelikle şu soruların yanıtlarını düşünmek
gerekir:

Çevik dönüşüm ile neyi amaçlıyorsunuz?
Neyi iyileştirmeye çalışıyorsunuz?
Bunu nasıl ölçüyorsunuz?
Daha iyiye gittiğinizi neye bakarak
anlayacaksınız?
Çalışanlarınız/müşterilerinizin karşılanmamış
ihtiyaçları/engelleri neler?

Bu mecrada "Çevik Dönüşüme başladık, uçuyoruz,
kaçıyoruz" postlarını çok gördüm de, "Çevik
Dönüşüm ile şunu elde ettik" diye yazanı hiç
görmedim nedense.

En basitinden benim gördüğüm/bildiğim bütün
dönüşümlerde başlarken çalışanlar ve/veya

40. Moda Diye Dönüşmeyin:
Amaç ve Sonuç Nerede?

müşteriye uygulanan NPS ile dönüşüm belli bir
noktaya geldikten sonra uygulanan NPS arasında
ya hiç bir fark yok, ya da değerler daha kötüye
gidiyor.

Şirketlerin C-level'larının havalı demeçlerini bir
kenara koyup, gerçek çalışanlara / müşterilere bir
soralım bakalım.

1 hafta açık kalacak ankete katılın, kurumunuzun
gerçekleştirdiği dönüşümü değerlendirin.

Eğitimlerde Scrum'ın rollerinden bahsettiğimde
bana hep sorulur:

Ben de hep şöyle cevap veririm:

"Bir yazılım ürününden bahsediyorsak, o ürünün
Ürün Sahibi yazılım işinden anlamalı. Elbette
domain bilgisi, market bilgisi de çok önemli ama
geliştirmeye çalıştığımız ürün "yazılım" olduğuna

"Hocam Product Owner (Ürün Sahibi) rolü
için uygun profil nedir?" diye.

41. İdeal Product Owner Profili:
Yazılımı Bilmek Şart mı?

"[Bir ürün sahibi] bir alan uzmanı, tercihen haftada
birkaç gün Boston'ın önde gelen hastanelerinden
birinde pratisyen hekim olmalıdır… bir yazılım
mühendisliği uzmanı olmalı, tercihen kendisi bazı
uygulamalar yazmış olmalıdır…

Kullanıcı hikayeleri (user stories), use cases ve
genel olarak yazılım spesifikasyonları ve özellikle
sağlık hizmetlerinde yazılım gereksinimleri
konusunda uzman olmalıdır… Gereksinimleri
ortaya çıkarmak müşterilerimiz ve satış ekibimiz
ile gerçekten yakın çalışmalı ve yeni işlevlerin
prototiplerini test etmek için uzman doktorları işe
almalıdır.

göre bunun sahipliğini üstlenecek kişi de
yazılımdan anlamalı."

Hatta yöntemi ortaya koyan iki kişiden biri olan
Jeff Sutherland aynı soruyu şu şekilde
yanıtlamaktadır diye örnek veririm:

O zaman iş birimlerinden domain uzmanlıklarını
nedeniyle PO yaptığımız arkadaşlarımız için ne
yapıyoruz?

Cevap: Onları eğitiyoruz.

Peki bu kolay mı?

Cevap: Hiç değil. Size bu işin kolay olduğunu
söyleyenlere de inanmayın.

Bu yol uzun, bu yol çok çaba gerektiyor. Ama
sonu gerçekten daha iyi bir yere çıkıyor.

[Ürün sahiplerimiz], genellikle geliştiriciler ve diğer
ürün sahiplerinden başka birinin yardımına ihtiyaç
duymaz. Bu pozisyon için yaptığımız ilk birkaç işe
alım bunu sağlayamadı. Tekrarlanan eğitim, koçluk
ve doğru kişiyi işe almak, bunun gerçekleşmesini
sağladı."

Bu yolda gerektiği gibi yürüyün, aksi halde sizin
durumunuzu en iyi Comic Agilé'ın şu görseli
özetler.

"Teknik borç" çoğunlukla kodlama aşamasında
yeterince iyi iş çıkartmamış olmanızın sonucu
değildir.

42. Kod Zamanla Çürür: Teknik
Borç ve Refactoring

(Tabi ki bu durumdan da kaynaklanan teknik borç
vardır. "Doğru" olanı yapmak yerine "hızlı" olanı
yapmayı tercih ederek teknik borç
yaratabilirsiniz.)

Çoğunlukla "teknik borç" geliştirdiğiniz uygulama
hakkında daha fazla bilgi edindikçe, daha fazla
öğrendikçe "refactoring" yapmamanızın
maliyetidir.

Robert C. Martin'in dediği gibi:

İlave gereksinimler ortaya çıktıkça ve uygulama
genişledikçe bu çürümeyi engellemek gerekir.

Tabi en başta bunun gerekli olduğunu bilen ve
buna alan açan, zaman ayıran bir yönetim
zihniyeti lazım.

Sizin şirkette o zihniyetten var mıdır, bilemem.

Çare refactoring!

"Kod zamanla çürür."

Bir caps falan mı diye durdum bir an bu fotoğrafı
görünce...

Neden bir şirket böyle bir şey yapar diye de uzun
uzun düşündüm. Kim verdi mesela bu kararı?

Ağaç dikilmesine elbette söyleyecek hiç bir şey
yok, dünyanın en güzel hareketi. Yalnız ormanın
adı neden Agile Ormanı?

Birincisi; "agile" kelimesi bir sıfat, "çevik
ormanı" diye bir şey olmaz.
İkincisi; o sene emekli olan çok değerli bir

43. Ağaç Dikerek Çevik Olunur
mu?

çalışanın ismini vermek dururken veya bir iş
kazası geçirmiş çalışanın adına bu işi
yapabilecekken neden "Agile Ormanı"? Mavi
yaka bir çalışanızın yeni doğan çocuğunun
adına olsa mesela daha hoş değil mi?

Şimdi de bunun yanına ekliyorum, "şirketler
sahip olamadıkları şeylerin ormanını
yaparlar".

Ayrıca nedir bu ormanı agile yapan diye sorsam.
Ağaçlar değişime daha mı hızlı tepki veriyor sizin
ormanda?

Bir başkası da çıkıp Waterfall Korusu, Spiral Göleti,
V-Model Vadisi mi yapsın buna cevap olarak? Ya
da biz de şirket olarak Scientific Management
Millet Bahçesi'ne sponsor mu olalım?

Hep söylüyorum, "şirketler sahip olamadıkları
şeyleri duvarlarına yazarlar".

Sevgili yöneticiler, karar vericiler biraz düşünseniz
mi acaba bu işleri yaparken?

Ağaç dikerek çevik olmak gibi bir beklentiniz varsa
ben size söyleyeyim o işler öyle olmuyor maalesef.

Gökrem Tekir hocam ile dün akşam dertleştik
biraz. Her şeyin başına "Agile" getirilmesinden o
da çok sıkılmış.

Gerçekten değer üretmeye odaklanmak yerine laf
salatası ile günü kurtarıp, "Agile" lafı ile prim yapma
olayı ne zaman son bulacak merak ve şaşkınlık
içerisinde bekliyoruz hep birlikte.

Hocam üşenmemiş bir de listesini yapmış bu lafların:

"Böyle her lafın başına 'Agile' koyunca oluyor
mu bu işler Onur?" dedi.

"Olmuyor elbette hocam" dedim.

44. Her Şeyin Başına "Agile"
Koyunca Oluyor mu?

Agile Danışman
Agile Koç
Agile İnşaat Yönetimi
Agile Proje Yönetimi
Agile Proje Yönetimi Ofisi
Agile İnsan Kaynakları
Agile Ekip (Takım)
Agile Proje Yöneticisi

Agile Dönüşüm
Agile Metodoloji
Agile Planlama
Agile Okul Ödevi Yapmak
Agile Ateşi
Agile Pazarlama
Agile Satın Alma
Agile Eğitim

Bir önceki gönderide söylediğim gibi bir de "Agile
Ormanı" var tabi...

Bir de benim çok sevdiğim "Agile Software
Requirements" var. Waterfall Software
Requirements diye bir şey yok ama nedense...
Sanki bir projede agile yaklaşımı kullanınca işi
yapacak insanların önüne koymamız gereken
bilgiler farklıymış gibi gereksinimleri de "agile"
diye etiketliyorlar bazı arkadaşlar.
Ama bunların hiç biri şu linkteki "Agile Sex"
kavramının önüne geçemez: [Link]

Listeyi daha da uzatmak mümkün elbette. Sizin
duyduğunuz "Agile" 'lar varsa yorumlarda
paylaşırsanız listemizi genişletiriz, atladığımız bir
şey kalmasın aman ha.

Ne yapıyor olursanız olun esas olan değer üretip
paydaş memnuniyeti sağlayıp sağlayamadığınızdır.
Bu kendi içinde yaptığınız şeyi hızlı yapmayı,
kaliteli yapmayı veya doğru şeyi yapmayı zaten
içerir. Bunu elde etmenin de pek farklı yolları
olabilir.

Laflara değil de aksiyonlara odaklandığımızda

https://www.brightworkresearch.com/how-to-bring-agile-development-into-your-sex-life/
https://www.brightworkresearch.com/how-to-bring-agile-development-into-your-sex-life/

Son dönemde şirketlerin sürekli "Biz agile olduk"
konulu paylaşımlarını görüyoruz Youtube, Linkedin
vb. platformlarda.

Durumu özetleyen video ektedir.

Feyyaz'ın da dediği gibi:

ve gerçekten neyi ne şekilde iyileştirdiğimizi
somut bir şekilde ortaya koyduğumuzda bu işler
daha iyi olacak Gökrem Tekir hocam! 44 nolu
post'a katkıların için sonsuz teşekkürler.

45. Kimsenin Bir Şey Bilmediği
Yerde: "Biz Agile Olduk"

"Kimsenin hiç bir şey bilmediği yerde bir
insan her şeyi bilebilir, bu kadar yani."

Videoyu izlemek için görsele tıklayın!

https://www.linkedin.com/posts/onurozc_nas%C4%B1l-agile-%C3%A7evik-olunmaz-post-no-45-activity-6870007189369565185-6S7C/?utm_source=linkedin_share&utm_medium=member_desktop_web

Türkiye'de "Agile"'ı kafasında çok başka yerlere
koyan o kadar çok kurum var ki...

46. Şekil Var, Öz Yok: Türkiye'de
Agile Yanılgısı

Videoyu izlemek için görsele tıklayın!

Ne olduğunu, kurumda neleri değiştireceğini
tam anlamadan sadece "havalı" görünmek
adına yapılan dönüşümler,
"Rakip yaptıysa biz de mutlaka yapmalıyız,
neyimiz eksik" yaklaşımı,
Olayın sadece şeklinin var olduğu (posterler,
videolar, şarkılar... vb), özünün kaybolduğu
ortamlar...

Sonunda pişman olacağınız işler yapmayın.

https://www.linkedin.com/posts/onurozc_gibi-activity-6884810663437340672-C1Ip/?utm_source=linkedin_share&utm_medium=member_desktop_web

Ellerini kirleten insanlar neyin nasıl olması
gerektiğini de çok iyi biliyor.

Niyetiniz -gerçekten- bir şeyleri değiştirmekse,
bizim gibi danışmanlardan çok takımlarınızı
dinleyerek başlayın.

Vay efendim "Development Team"
demeyecekmişiz, Scrum Guide'a gelen son
güncellemeyle onun ismi "Developers" olarak
değişmiş.

47. Grooming mi, Refinement
mı?: İsimlere Takılıp Özü
Unutmak

Videoyu izlemek için görsele tıklayın!

https://www.linkedin.com/posts/onurozc_gibi-activity-6888855545940471808-Zy_z/?utm_source=linkedin_share&utm_medium=member_desktop_web

Grooming denmezmiş, onun ismi Refinement'mış.
Ürün vizyonu olmuyormuş, "Product Goal" demek
lazımmış.

İsimlere, olayın şekline neden bu kadar
takılıyorsunuz sevgili takımlar / şirketler?

Olayın şeklini tartışmaktan, özünü unuttunuz!

Garaj, alan, tribe lafları havalarda uçuşuyor da,
müşterileriniz halen "doğru ürünü üretmediğinizi"
veya "ürettiğiniz şeyi doğru ve hızlı üretmediğinizi"
basbas bağırıyor.

Takımlarınız da "burada çalışan memnuniyeti yok"
diye basbas bağırıyor.

Sahi siz yaptığınız bu dönüşümlerle gerçekten kimi
memnun ediyorsunuz?

İsimlere çok takılıyorsunuz, neden isimlere bu
kadar çok takılıyorsunuz?

Müşteri: "Onur Bey merhaba, biz sizden çevik
dönüşüm danışmanlığı almak istiyoruz."

Ben: "Bu konuda size yardımcı olabiliriz. Neden
böyle bir dönüşüme ihtiyacınız olduğunu
düşünüyorsunuz?"

Müşteri: "Daha hızlı yazılım geliştirmek istiyoruz."
Ben: "Peki mevcutta nasıl bir hızla yazılım
geliştiriyorsunuz?"

 Müşteri: "Mevcuttaaaaa?!?, o konuda bir şey
 ölçmüyoruz, o nedenle size bir cevap
 veremiyorum."

Ben: "Peki, çevik dönüşümün başka hangi
problemlerinize derman olmasını bekliyorsunuz?"

Müşteri: "Daha yüksek müşteri ve çalışan
memnuniyeti elde etmemizi sağlarsa çok iyi olur."

Ben: "Müşterileriniz ve çalışanlarınız bugün
hallerinden ne kadar memnun?"

48. "Daha Hızlı" Ama Ne Kadar?

 Müşteri: "Pek memnun değiller ama bu
 konuda da size net bir cevap veremem."

Ben: "Peki gerçekleştireceğimiz çevik dönüşümün
bu alanlarda bir iyileşme sağlayıp sağlamadığını
nasıl anlayacağız? Hatta problemlerinizi çözecek
şeyin 'çevik dönüşüm' olduğu kararını nasıl
verdiniz?"

Müşteri: "Ama Onur Bey, biz sizden çevik
dönüşüm danışmanlığı almak istiyoruz."

Ben: "Bu konuda size seve seve yardımcı olabiliriz.
Ancak gerçekten neden böyle bir dönüşüme
ihtiyacınız olduğunu düşünüyorsunuz?"

Hayatında 1 tane ürünün sorumluluğunu almamış
agile coach'lar "Product Ownership", "Scrum
Master'lık" ile ilgili ahkam kesiyor ve kurumsal
dünyanın gerçeklerinden haberleri yokmuş gibi
insanları işlerini düzgün yapamadıkları için
eleştiriyor.

Siz önce içinde bulunduğunuz ülkedeki bir şirkette
bir yazılım projesinin içerisine -gerçekten- dahil
olup o insanların yaşadığı stresi, yönetimden
paydaşlardan gelen baskıyı bir yaşayın.

49. Ahkam Kesmek Kolay

Makul olmayan insanların makul olmayan
beklentilerini, hatta fantezilerini tatmin etmeye
çalışan insanlar sizin "havalı ama bir işe
yaramayan" söylemlerinize pek de muhtaç değil
bence.

Yapın bir takımda product owner'lık, scrum
master'lık biz de görelim bakalım
söylediklerinizin ne kadarını -gerçekten-
yapabiliyorsunuz.

50. Tersine Mühendislik Çilesi

İnsanları eleştirmek kolay da, insanların o
davranışları sergilemesine neden olan ortamı ve
yönetim zihniyetini değiştirmek o kadar kolay değil
maalesef.

Agile veya yazılım gereksinimleri hakkında bir
eğitim verdiğimde katılımcılara sorarım:

Hiç bir dayanağı olmadan takımın önüne koyulmuş
bir deadline'a yetişebilmek için aylarca geceli
gündüzlü mesai yapmak zorunda kalın bakalım
adınızı söyleyecek haliniz kalacak mı?

"Geliştirmiş olduğunuz bir uygulama üzerinde
nasıl değişiklik yapacağınızı, yeni talep edilen
bir fonksiyonu nasıl ekleyeceğinizi anlamak
için mevcut uygulamanın kodunu okuyup
bilgiyi koddan sökmek için tersine
mühendislik yapmak zorunda kaldınız mı?"

"Agile Manifesto sadece yazılım üretin,
dokümantasyon üretmeyin, dokümantasyon

Bu soru karşısında neredeyse eğitimdeki herkes
elini kaldırır.

Sonra tersine mühendislik ile elde ettikleri bilgileri
ileride başvurmak üzere dokümante edip
etmediklerini sorarım. Sadece birkaç el yukarı
kalkar.

"Neden?" diye sorarım?

Hemen her eğitimde birisi "Ama hocam çalışan
yazılım, kapsamlı dokümantasyon'dan daha
değerlidir demiyor mu Agile Manifesto" diyerek
kendini savunur.

Benim ise şu açıklamayı yapmam gerekir:

kötü bir şeydir demiyor. Ortada çalışan
yazılım yokken sayfalarca üretilmiş bir
dokümantasyon müşteri için değerli değildir
diyor."

Elde ettiğiniz bilgiyi kayıt altına almamanız,
gelecekte başka bir değişiklik yapmak için
uygulamanın aynı bölümüne giren birinin koddan
bilgiyi sökmek için tersine mühendislik sürecini
tekrar etmesi gerektiği anlamına gelir.

Eee, nerede kaldı çeviklik? Hani hızlıca değişime
adapte oluyorduk? Yavaşladık işte!

Ayrıca, tersine mühendislik yoluyla koddan bilgiyi
sökmek insanlar için sıkıcıdır. Bu işi tekrar tekrar
yapmak da aşırı verimsizdir.

Öğrendiklerinizi yazarsanız, bu bilgiler sizin veya
başka birinin ona geri dönmesi gerektiğinde
kullanılabilir. Bu, siz üzerinde çalışırken kötü
belgelenmiş bir uygulama hakkında aşamalı olarak
bilgi biriktirmenin bir yoludur. Agile Manifesto'nun
eş yazarlarından Ward Cunningham'ın yazılım
takımlarının kolektif bir şekilde dokümantasyon
yapmasına izin veren Wiki (What I Know Is) fikrini

geliştirmiş olması da bunun kanıtıdır.

Tersine mühendislik sonucunda öğrendiklerinizi
yazmak, bu bilgileri öğrenmek için harcamanız
gereken zamandan daha az zaman alır. Tabi
geliştirdiğiniz uygulamada tersine mühendislik
yapmanıza gerek kalmayacak şekilde
dokümantasyon yapmak en iyisidir.

Uygulamanız ile ilgili edindiğiniz bilgileri
kaydetmemeye elbette karar verebilirsiniz, ancak
bu ancak siz de dahil hiç kimsenin sistemin o
kısmıyla bir daha çalışmak zorunda
olmayacağından emin olduğunuzda anlamlıdır.
Hepimiz biliyoruz ki bu çok nadiren söz konusu
olabilecek bir durumdur.

Geleceği tahmin etme konusunda yetenekli
olmadığımız için, bilgileri paylaşılabilir bir formda
tutmayı tercih edin. Bu pratik, edindiğiniz bilgiyi
(zamanla kaybolacağı kesin olan) beyninizde
saklamaktan daha iyidir.

Dokümantasyonun tek yolunun Türkçe / İngilizce
gibi doğal bir dil kullanmak olmadığını da biliyoruz.
Doğal dil kullanarak yazılmış sayfalarca düz yazı

yerine bir görsel model insanlar tarafından çok
daha hızlı bir şekilde anlaşılır.

3 şirketten 2 tanesinin üst yöneticilerinin dilindeki
söylem, sosyal medya postları:

51. Bir Yerde Bir Şeyler Yanlış

Neredeyse ülkedeki bütün İK'cılar "çevik
çalışıyor" ama çalışanlar mutsuz, turnover
tavan...
Ülkedeki bütün liderler iki günlük sınıf eğitimi
ile "Çevik Lider" oluverdi ama işten
ayrılmalarda hala en önemli neden "yönetici"...
Herkes Scrum uyguluyor ama "scope change"
yemeden biten Sprint yok...
Herkes kaliteden bahsediyor ama gittiğim her
kurumda istisnasız her takımın backlog'unun
yarısından fazlası "hata" tipinde işler...

Aynı şirketlerin çalışanlarının söylemleri:

Bir yerde bir şeyler yanlış gibi sanki ama hadi
neyse...

"Biz de şahane bir çevik dönüşüm yaptık
geçen sene"

"Hocam danışmanlık firması 2 haftalık
 Sprint'leri zorunlu tutuyor, iş birimlerindeki
 arkadaşlar da size estimation seanslarına
 dahil olup bizce bu iş 3 sp diyorlar, kafayı
 yedik artık"

52. Yardımcı mı, Köstek mi?:
Agile Rollerindeki Tehlike
Takımın planlama toplantısına katılan Scrum
Master / Kanban Master / Agile Coach / Agile
Danışmanı takıma yardımcı olduğunu düşünüyor...

Videodaki gibi davranan arkadaşlar doğru ürünü
üretmenize, ürünü doğru üretmenize veya hızlı
üretmenize katkı sağlayamaz...

Bu rollere konumlayacağınız insanları dikkatli bir
şekilde seçiniz...

Kıssadan hisse:

Videoyu izlemek için görsele tıklayın!

https://www.youtube.com/watch?v=PSPhFxPivbA

53. Tahmin mi, Hedef mi?:
Rasyonel Olmayan Beklentiler
Şunu net bir şekilde anlamamız gerekiyor:
Yönetimin veya pazarlama departmanının
söylediği (ve hatta dayattığı) bir teslim tarihi bir
tahmin değil, bir hedeftir.

Maalesef çoğunlukla gerçekçi olmayan hedefler
belirlemek konusunda çok becerikli insanlar vardır
ve bu arkadaşlar takımınızın önüne bu rasyonel
olmayan hedefleri şak diye koyarlar.

Bu noktada bazen öyle bir irrasyonellik olur ki
takımın önüne hedef koyarken "27 Nisan benim
doğum günüm, bu iş o zamana yetişsin" diyen
insanlar olduğunu görmüşlüğümüz vardır.

Belirli bir büyüklükte ve üretkenlik düzeyindeki bir
takım, belirli bir zamanda ancak belirli miktarda -
kaliteli- işlevsellik üretebilir.

Aynı insanlar evlerine çağırdıkları badana
ustasına "burası benim 120 metrekare evim,
bunu 2 güne boyamanı istiyorum"
diyebiliyorlar mı diye hep merak etmişimdir.
Usta vallahi fırçayla vurur kafaya!

Fiziksel bir ürünün üretildiği üretim bandının bir
kapasitesi olduğunu hepimiz kabul ediyorsak, bu
durumu da kabul etmemiz gerekir. 4 saatte bir
"çıktı" üreten bir üretim bandına "bana 2 saatte bir
çıktı ver" diyor musunuz?

Bandı hızlandırmak için yapılabilecek şeyler vardır
elbette ama bunlar öyle parmak şıklattığınızda
yapılabilecek şeyler değildir, yapısal değişiklerdir
ve zaman alır. Belki orta vadede bandınızı 3 saatte
bir "çıktı" verebilen hale getirebilirsiniz.

Tahminleme konusundaki öğretiler genellikle;

"Tahminlemeyi" yapılacak işin net olarak
tanımladığı bir ortamda, işin yapılabilmesi için
gerekli olacak çabanın, maliyeti ve zamanın ne
olduğunu ortaya çıkarmak şeklinde anlatır.

Ancak tahminleme bazen farklı bir şekilde de
çalışabilir.

Belirli bir tarihe kadar bir şeylerin mutlaka teslim
edilmesi gerekiyorsa, o zaman tahmincinin kaliteyi
düşürmeden ne kadar işlevselliğin o zaman
sınırının içerisinde üretilebileceğini belirlemesi

gerekir.

Çevik yazılım geliştirmede kullanılan kullanıcı
hikayelerinin tahminlenmesi ve bunlardan
bazılarının sabit uzunluktaki bir sprint'e /
iterasyon'a alınmasının arkasındaki mantık budur.

Taahhütler, sadece birileri tarafından önümüze
koyulan ve genellikle makul olmayan hedeflere
değil, makul tahminlere dayanmalıdır.

Belirlenen hedef tarihe kadar işin tamamlanması
için gerçekçi bir olasılık yoksa, o iş parçası
gecikmiş olarak kabul edilmemelidir.

Çevik mühendislik pratikleri, programcıların
çoğunun son 70 yılda sergiledikleri davranışları
radikal bir şekilde değiştirmesini gerektirir.

Bu pratikler programcıları (çoğunun başlangıçta
saçma olduğunu düşündüğü) bir dizi ritüele zorlar.

Eğer bu pratikleri kullanmaya kalkıştıysanız şu
cümlelerden en az birini duyduğunuzdan eminim:

54. Test Yoksa Çeviklik De Yok!

“Abi şu köşede kulaklığımı takıp kodumu
yazıyordum, nereden çıktı şimdi Pair
Programming !$!?"
"Patron bu iş Cuma'ya yetişsin istiyor, testleri
sonra yazarız."
"Refactoring için zamanımız yok, mevcut
kodun üzerine ekleyiverin şu yeni özelliği."

Birçok programcı Agile dönüşüm yolculukları
içerisinde bu pratiklerden uzak duruyor. (Aslında
programcılardan öte şirketler demek lazım, çünkü
çoğu durumda programcı bu pratikleri kullanmak
istese de şirket buna izin vermiyor.)

Bu pratiklerden uzak duranların gerçekten çevik
olma olasılığı düşüktür. Çünkü bu uygulamalar
çevikliğin özüdür.

TDD, Refactoring, Simple Design ve evet, hatta
Pair Programming olmadan, bir takımın gerçekten
çevik olması mümkün değildir.

Şöyle bir şeye dikkat çekmek istiyorum:

55. Sadece Soru Sormakla
Olmaz: Koçluk ve Uzmanlık

Bakıyorum da çeviklik koçları / danışmanlarının
çoğu tarafından çevikliği öğretmek için kullanılan
yöntemlerin ve tekniklerin çoğu, profesyonel
koçluk ile ilgili şeyler.

Bunlar bireylerin ve grupların önlerine çıkan
engelleri keşfetmelerine ve nasıl ilerleyeceklerine
kendileri karar vermelerine yardımcı olan “koçluk
araçları”dır. Yeni veya "agile" ile icat edilmiş şeyler
de değildir. International Coach Federation (ICF)
vb. kurumların programları ile bu alanda kendini
yetiştirmiş onbinlerce insan vardır.

Bir koçluk yetkinliği, "keşif, içgörü, bağlılık veya
eylem uyandıran sorular sormak" olan güçlü
sorgulamadır (powerful questioning). Bunlar iyi
araçlarıdır, kullanılması faydalıdır.

Ancak;

Kanban'ı veya XP'yi hiç duymamış ancak
bundan faydalanabilecek bir takımla
çalışıyorsak, hiçbir güçlü soru veya diğer
profesyonel koçluk tekniği, birinin
kendiliğinden Kanban'ı veya XP'yi icat
etmesine neden olmaz.

Bu noktada, çeviklik koçu /danışmanı, takıma
potansiyel olarak faydalı olabilecek uzmanlık
sunma moduna geçmelidir. Bunu yapabilmesi için
de bu konularda "uzman" olması gerekir.

Birden fazla çevik çerçeve/yöntem, çevik ürün
yönetimi, çevik mühendislik pratikleri gibi
konularda bilgi ve tecrübe sahibi olmayan bir
koçtan / danışmandan alacağınız fayda limitlidir.

"Koç" lafının başına "Agile" koymakla olmuyor
maalesef bu işler.

2 günlük Scrum ya da Agile Coach eğitimi
sonucunda Linkedin headline'ınını "Agile Coach"
olarak güncelleyenler, orada mısınız?

Planlama etkinliklerinizde verdiğiniz efor
tahminlerini bir yerlere kaydetmediğiniz ve bu
tahminleri gerçekleşen eforlarla
karşılaştırmadığınız sürece, tahminleme
konusunda iyileşemezsiniz.

56. Tahmin mi, Atmasyon mu?:
Veriye Dayalı İyileştirme

Türkçe'de ikisi için de aynı sözcüğü kullanıyoruz
ama "guess" ile "estimate" arasında fark vardır.

 İş büyüklüklerini "guess" etmek yerine
 "estimate" etmek istiyorsanız kayıt tutun.

 Yoksa sonsuza kadar "guess" edersiniz.

Tam, açık, net ve müşterilerin sistem yardımıyla
gerçekten ne başarmak istediğini açıklayan iyi
gereksinimlere sahip olmak yazılım endüstrisinde
hep bir zorluk olmuştur.

Öyle ki, Yazılım Mühendisliği'nin babası Frederick
Brooks 1987’de yayınlanan "No Silver Bullet:
Essence and Accidents of Software Engineering”
makalesinde şöyle der:

57. Agile Sihirli Değnek Değil

"Bir yazılım sistemi geliştirmenin en zor kısmı
tam olarak ne inşa edileceğine karar
vermektir. Kavramsal çalışmanın başka hiçbir
kısmı, insanlar için, makineler için ve diğer
yazılım sistemleri için yapılan tüm arayüzler
dahil olmak üzere ayrıntılı teknik gereklilikleri

belirlemek kadar zor değildir.

İşin başka hiç bir kısmı, yanlış yapılırsa ortaya
çıkan sistemi gereksinimler kadar
sakatlayamaz. Başka hiçbir parçanın daha
sonra düzeltilmesi daha zor değildir."

İyi gereksinimlerin eksikliğinden kaynaklanan
sorunları hepimiz biliyoruz. İyi gereksinimlere
sahip olmadığımızda karşımıza çıkan en temel
sorun: müşterilerin gerçekten ihtiyacı olan
şeyleri ona veremeyen projelerdir.

Tüm yazılım projelerinin iyi gereksinimlere ihtiyacı
vardır ve çevik projeler de bu konuda farklı
değildir. Agile, yeni gereksinim tekniklerini oyuna
dahil eder ve iş süreçlerinin sahiplerinin yazılım
geliştirme takımı ile yakın çalışmasına güçlü bir
şekilde odaklanır. Müşterinin istedikleri ile gerçek
ihtiyaçları arasındaki boşluğu daha iyi görebilmesi
için ona belirli aralıklarda çalışır durumda yazılım
göstermemizi öğütler.

Ancak;

Çoğu kuruluş, büyük projelerde ve kuruluş

genelinde karşılaştıkları gereksinim zorluklarının
yalnızca Agile'a geçişle çözülmediğini görüyor. İyi
gereksinimlerin elde edilmesiyle ilgili mevcut
sorunlar devam ediyor.

Temel fark, Agile ile kısa döngülerde sorunlardan
kaçmak zor olduğu için kurumların gereksinim
sorunlarıyla daha erken yüzleştiklerini
görmeleridir.

Geleneksel gereksinim tekniklerinden kullanıcı
hikayelerine geçiş, sihirli bir şekilde daha iyi
gereksinimlerle sonuçlanmaz. Çalışanlarınızın
gereksinimleri ortaya çıkarma ve ifade etme
noktasında işe yaradığı bilinen tekniklerde yetkin
olması gerekir. Çalışanlarınızın becerilerinde
boşluklar varsa, bunların doldurulması gerekir.

Agile'a geçerken ekiplerin karşılaştıkları mevcut
gereksinim sorunlarını belirlemeleri, bunları ele
almaya yardımcı olacak gereksinim uygulamalarını
seçmeleri ve iş birimleri arasında önceliklendirme
gibi organizasyon düzeyindeki sorunlarını ele
almaları elzemdir.

58. En Anlaşılmayan Pratik:
Acceptance Tests ve Gerçekler

Gördüğüm kadarıyla “Acceptance Tests” pratiği
çevik pratikler arasında en anlaşılmayan
pratiklerden biri.

İçerisinde bulunduğumuz neredeyse her
danışmanlık projesinde takımların bu pratiği ya
kullanmadığına ya da yanlış kullandığına şahit
oluyoruz.

Bu durum biraz da garip, çünkü kabul testleri
pratiğinin arkasındaki mantık oldukça basit.

Bu pratiğin öğütlediği şeyler:

Tanımlamadığımız bir şeyi üretmemiz mümkün
olmadığından elbette kabul testleri hazır olmayan
bir story henüz “tanımlı/hazır” hale gelmemiştir.
Scrum'da Refinement aktivitesi bunun için vardır.

İşi talep edenlerle işi yapacakların "ne" üretileceği
konusunda "ortak bir anlayışa" erişmesi elzemdir.
User story (kullanıcı hikayesi) formatının olmazsa
olmaz parçalarından biri kabul testleridir.

 Sadece 1 cümle ile ifade edilen bir kullanıcı
 hikayesini bir takımın sağlıklı bir şekilde
 implement etmesi mümkün değildir.

Gereksinimlerin ortaya çıkarılması noktasında
business ile teknik ekiplerin yakın çalışması,

Teknik ekip içerisindeki özellikle QA gibi rollerin
gereksinimlerle ilgili çalışmalara dahil edilerek
happy path dışındaki akışların ortaya çıkmasına
yardımcı olması,

Üzerinde anlaşılan gereksinimlerin formal bir dil
kullanılarak -ve hatta otomatize edilmesi de
mümkün olan- testler ile ifade edilmesi.

Ve elbette iterasyon/sprint içerisinde kabul
testlerini geçemeyen bir story henüz “bitti” olarak
değerlendirilmemelidir.

Şimdi lütfen kullandığınız Jira vb. issue tracking
uygulamasını açın ve aktif Sprint’inize konu olan
maddelerin kaçının içerisinde kabul testlerinin
düzgün bir şekilde ifade edilmiş olduğunu kontrol
edin.

Eğer elinizdeki kayıtların detayı 1-2 cümleden
öteye geçmiyorsa “kabul testleri” pratiğini doğru
kullanmıyorsunuz demektir.

Buyrun size bir tane daha “Nasıl Agile (Çevik)
Olunmaz?” durumu.

Bu durumu keşfettiğinize göre şimdi takım olarak
bunu düzeltmek için neler yapabileceğinizi
konuşmaya başlayabilirsiniz.

Üst yönetimler ile çevik dönüşümden beklentilerini
ve dönüşümün yol haritasını konuşurken genelde
olan şey budur.

59. Renkli Post-it Sevdası

Geçmişte dönüşüm danışmanlığı için
görüştüğümüz Türkiye'nin çok büyük
şirketlerinden birinin CIO'sunun toplantıda şöyle
sormuşluğu vardır:

"Ya ben görüyorum başka firmaların
ofislerinde duvarlarda hep post-it'ler var,
rengarenk, çok güzel, bizde de olacak di mi
öyle şeyler?"

"Olmaz mı, her tarafı sizin için post-it'lerle
donatacağız" desem gönlüm razı değil...

"İşin şekline neden bu kadar takılıyorsunuz? Olay
renkli duvarlar mı?" desem CIO'yu mutsuz
edeceğiz.

Dönüşümden beklentiniz renkli bir ofis mi
gerçekten sevgili üst yönetim?

Maviden yeşile belli belirsiz bir geçiş de olsun mu?

Clean Code yaklaşımının mucidi ve Agile
Manifesto’nun eş yazarlarından Robert C. Martin
diyor ki:

60. Agile'ın Kalbi: XP

“Tüm Çevik süreçler arasında Extreme
Programming (XP) en iyi tanımlanmış, en
eksiksiz ve en az karışık olanıdır. Hemen
hemen tüm diğer Çevik süreçler, XP'nin bir
alt kümesi veya bir varyasyonudur.

Bu, diğer Çevik süreçlerin gözardı edilmesi
gerektiği anlamına gelmez. Aslında onları
çeşitli projeler için değerli ve kullanışlı
bulabilirsiniz.

Ancak Agile'ın gerçekte neyle ilgili olduğunu
anlamak istiyorsanız, XP’yi anlamaya
çalışmaktan daha iyi bir yol yoktur. XP,
Çevik'in prototipi ve en iyi temsilcisidir.”

Dolayısıyla, Agile hakkında düşünen, konuşan,
yazan birinin XP’den hiç bahsetmemesi konu
hakkında pek bir şey bilmediğinin açık ispatıdır.

Sektördeki dostlarımızla sohbet ettiğimizde “abi
bizim şirketteki agile koç hiçbir işe yaramıyor” diye
sitem etmelerinin nedeni de budur.

Business pratikleri, takım pratikleri ve teknik
pratikler hakkında yol gösteremeyen bir

koç/danışman size fayda sağlayamaz.

Agile nedir’i anlamak istiyorsanız görseldeki
“Circle of Life”ı anlamanız gerekir.

61. Ölçemediğini Yönetemezsin

Videoyu izlemek için görsele tıklayın!

https://www.linkedin.com/posts/onurozc_nas%C4%B1l-agile-%C3%A7evik-olunmaz-post-no61-activity-6942522254773604352-iDyc/?utm_source=linkedin_share&utm_medium=member_desktop_web

Bir takıma / organizasyona onları iyileştireceğinizi
vaat ediyorsanız bunu sayılarla ortaya koymak
zorundasınız.

Mevcut durumun ne olduğunu sayılarla ortaya
koyup, hedef durumun ne olduğunu yine sayılarla
ifade etmedikten sonra herkes bir şeyleri
iyileştirdiğini iddia edebilir.

Dahası; sizi iyileşmenin ne olduğunu görmemekle
suçlayabilir.

İşte çevik dönüşümlerin çoğunda olan şey de
budur.

"Bak bir agile yapalım gör sen noluyor?"
diye başlarsanız işin sonunda kendinize:

"Eee noldu?" diye sorarsınız.

"Eee iyi de ne ölçelim?"

Buyrun size bazı öneriler:

Kategori Alt Kategori Metrik

Değer Finansal Gelir

Değer Finansal Gider

Değer Finansal Kâr

Değer Finansal Kullanıcı Kazanım Maliyeti

Değer Memnuniyet Kullanıcı Başına Düşen Şikayet

Değer Memnuniyet NTS

Değer Memnuniyet Müşteri Memnuniyeti Puanı

Değer Memnuniyet İç Müşteri NTS

Değer Memnuniyet Mağaza Puanı

Değer Memnuniyet Referral Oranı

Değer Tüketim İndirme Sayısı

Değer Tüketim Aktif Kullanıcı Sayısı

Değer Tüketim Geri Dönen Kullanıcı Sayısı

Değer Tüketim Kayıtlı Kullanıcı Sayısı

Değer Tüketim İşlem Sayısı

Değer Tüketim Satın Alma Oranı

Değer Tüketim Yüklenmiş Versiyon Indeksi

Üretim Kalite Test Kapsaması

Üretim Kalite Canlıdan Dönen Hata Sayısı

Takım Mutluluk Mutluluk Puanı (Niko Niko)

Takım Uyum Olgunluk Skoru

Üretim Kalite Kullanıcı Kabul Başarı Notu

Üretim Kalite Denek Sayısı

Üretim Kalite Statik Kod Analizi

Üretim Kalite Devreye Alma Başarısı

Üretim Kalite Güvenlik Testi Sonucu

Üretim Üretkenlik Velocity

Üretim Üretkenlik Talep Karşılama Süresi

Üretim Üretkenlik Taahhüt Uyum Oranı

Üretim Üretkenlik Yayın Sıklığı

Üretim Üretkenlik Müşteri Teslim Süresi

Üretim Üretkenlik Hata düzeltme süresi

Üretim Yenilikçilik Yenilik Oranı

62. Sektörün Sesi Olmak: Tarih
Tekerrür Ediyor

"Nasıl Agile (Çevik) Olunmaz?" serisi artık
resmen sektör ve şirketler konusunda anlık
içgörüler elde etmemizi sağlıyor.

Mesela bugün aynı şirketten 2 çalışan serinin 3 ay
önce yayınladığım çok eski bir postu olan 53.
post'u aramış bulmuş, yeniden yayınlamış ve
beğenmiş.

53. post'ta özetle ne demiştik:

"Yönetimin veya pazarlama departmanının
söylediği (ve hatta dayattığı) bir teslim tarihi

bir tahmin değil, bir hedeftir. Maalesef
çoğunlukla gerçekçi olmayan hedefler
belirlemek konusunda çok becerikli insanlar
vardır ve bu arkadaşlar takımınızın önüne bu
rasyonel olmayan hedefleri şak diye
koyarlar."

Tahminimce bu şirkette bu hafta yine rasyonel
olmayan birileri, bu arkadaşlarımızın önüne şak diye
koymuş imkansız hedefleri... Onlar da sitemlerini bu
post ile dile getirmek istemişler herhalde. Durum
gerçekten böyleyse ve duygularına tercüman
olabilmişsek ne mutlu bizlere.

Kendimce inandığım şeyleri içine biraz da mizah
katarak yazayım istemiştim seriye başlarken. İlgi
gösteren ve destekleyen herkese bu vesile ile
sonsuz teşekkürler. Seveni olduğu kadar sevmeyeni
de var tabi bu serinin, onlara da geri bildirimleri için
teşekkürler.

Ne diyeyim? Şirket isimleri değişse de bizim
sektörde yaşananlar pek değişmiyor, tarih hep
tekerrür ediyor demek ki.

O zaman 63. gönderide sektörün başka bir
yarasında tekrar buluşmak üzere...

63. Göstermelik Dönüşümler ve
Gerçekler

Çevik dönüşüm yaptığını söyleyen şirketlerin
paylaşımlarını görünce hissettiklerimi anlatan bir
görsel tam olarak bu...

Neler görmedik ki bu süreçte:

"Agile Ormanı" dikenlerden tutun da...
(Hatırlayanlar olacaktır o efsane paylaşımı)
"Hocam biz bu işi çok iyi becerdik, daily'lerimiz
15 dakikayı asla aşmıyor, başka şirketlerde
yarım saat süren daily'ler var." diye bununla
övünenlere kadar...

Bir olay bir miktar yanlış anlaşılabilir, hadi buna
tamam...

Ama bu kadar da olmaz ki be arkadaş!

Gerçekten sayenizde;

"Allah göstermesin dediğimiz her şeyi 4K
izledik."

Bir yazılım projesinin tamamlanma zamanını nasıl
tahmin edersiniz?

Basit cevap, projeyi oluşturan alt parçalara
ayırmanız ve ardından bu parçaları tahmin

64. Yazılımda Süre Öngörüsü
Paradoksu

etmenizdir.Örneğin, çevik yaklaşımlarla çalışan
takımlar ellerindeki herhangi bir büyük işi önce
epic’lere, ardından story’lere ayırarak bunu
yaparlar.

Bu gayet iyi bir yaklaşımdır; ancak ya ayırdığınız
bu parçalar doğru tahmin edilemeyecek kadar
büyükse ne yapacaksanız?

O zaman bu parçaları daha küçük parçalara
ayırırsınız ve tahmin etmeye devam edersiniz.
Eminim hepiniz buradaki özyinelemeli (recursive)
durumu fark ediyorsunuz.

Bu yaklaşımı hangi seviyeye kadar aşağı
taşıyabilirsiniz? Bu yaklaşımı kod satırlarına kadar
taşıyabilirsiniz. Aslında, programcıların yaptığı şey
budur. Programcı, bir görevi kod satırlarına ayırma
becerisine sahip kişidir.

Buradan çıkan sonuç nedir?

Bir projenin doğru ve kesin bir tahminini
istiyorsanız, onu yazılacak kod satırlarına
kadar ayırın. Bunu yapmak için harcadığınız
zaman, projeyi inşa etmenin ne kadar

 süreceğini size çok doğru ve kesin bir
şekilde verecektir - çünkü bunu yaptığınızda
zaten projenizi yapmış olacaksınız.

Ölüm anımı önümüzdeki bin yıl içinde bir
zaman olarak tahmin ediyorum. Bu tamamen
doğrudur, ancak çok kesin değildir. Bu

Tabii ki, bu yaklaşım bir “tahminin” asıl noktasını
kaçırıyor. Tahmin bir tahmindir; projeyi gerçekten
inşa etmeden projenin ne kadar süreceğine dair
ortaya koyduğumuz bir fikirdir.

Çoğu zaman tahmin maliyetinin düşük olmasını
isteriz. Bu nedenle, bir tahmin, tanımı gereği zaten
“kesin” değildir. Bu kesin olmama durumu, tahmini
oluşturmak için gereken süreyi kısaltmamıza
olanak tanır. Kesinlik ne kadar az olursa, tahmin o
kadar az zaman alacaktır.

Tabi buraya kadar söylediklerimiz, bir tahminin
tamamen yanlış olması gerektiği anlamına da
gelmiyor. Tahminler mümkün olduğu kadar doğru
olmalı, ancak tahminin maliyetini düşük tutmak için
gerektiği kadar doğru olmalıdır.

İşte size bir örnek:

doğru tahmini oluşturmak neredeyse hiç
zamanımı almadı çünkü buradaki kesinlik çok
düşük.

Yeterince doğru bir tahmin, tahmin edilen olayın
neredeyse kesin olarak gerçekleşeceği bir zaman
aralığını belirtir. Yazılım takımları için taktik, doğru
olacak en küçük aralığı seçmek için mümkün olan
en az miktarda zaman harcamaktır.

İşte bu yüzden sevgili üst yönetimler ve iş
birimleri;

"Bizim proje ne zaman biter?" diye sorduğunuzda
size çok geniş olmayan bir “aralık” söyleyen
takımlarınıza güvenin. Onlar ne yaptıklarını
biliyorlardır.

Hee yok, "bana günü gününe saati saatine bir
tahmin verilsin" istiyorsanız mevcutta
harcadıklarından 12.068 kat eforla size o tahmini
verirler.

Ama sonra bana gelip "İstediğimiz bir işin
tahminini bile vermeleri 3 ay sürüyor." demeyin.

65. Scrum Master: Gönüllü Değil,
"Usta" Olmalı

Bana en çok sorulan sorulardan biridir:

Scrum Guide diyor ki:

Yani bu arkadaş ekibi geliştirmek üzere çaba sarf
etmeli.

"Hocam Scrum Master nasıl bir profil olmalı?"

"The Scrum Master is accountable for the
Scrum Team’s effectiveness. They do this by
enabling the Scrum Team to improve its
practices, within the Scrum framework."

Tek başına çaba yeter mi?

Elbette yetmez, yetkin olmayan bir kişi takımı da
geliştiremez. Bu arkadaş iyi bir mühendis olmalı,
takımı iyi (mühendislik) pratikleri konusunda
geliştirmeli.

Bazı danışmanların sizi yönlendirdiği gibi
"Aramızdan bir gönüllüyü Scrum Master olarak
seçelim" şeklinde ilerlerseniz muhtemelen ekipteki
hevesli ama yetkin olmayan bir arkadaşı Scrum
Master yapmış olursunuz.

Yapmayın bunu. Bu sorumluluğun adı üzerinde
"Master".

Yaparsanız ne olur? Doğru olanı yapmak yerine,
kolay olanı yapmış olursunuz. İşte yine Agile’ın
şekli var. Özü kayıp.

Yaşar Safkan Hoca'nın dediği gibi:

"Hoppala paşam, Türk kaşığıyla Amerikan
çikolatası."

(Bu arada kendisinin "Agile: Türk Kaşığıyla Amerikan Çikolatası" yazısını hala
okumadıysanız işi gücü 5 dakika bırakın ve safkan.org'dan okuyun derim.)

66. Tartışmalı Ama Gerekli: Eşli
Programlama Gerçeği
Pair programming (eşli programlama) pratiği,
yıllardan beri önemli miktarda tartışmayı
beraberinde getirdi.

İlk bakışta çoğu kişi, iki (veya daha fazla) kişinin
aynı problem üzerinde verimli bir şekilde birlikte
çalışabileceği fikrine olumsuz tepki vermeye
devam ediyor. Geçen hafta verdiğim bir eğitimde
de yine sınıfla uzun uzun bu konuyu tartıştık.

Her şeyden önce; eşli programlama isteğe bağlı
ve aralıklı bir pratiktir.

Kimse eşli programlama yapmaya zorlanmamalı.
Zaman zaman geliştiricilerin tek başına kodlama
yapmaları için pek çok iyi neden var. Bir takım
yaklaşık olarak vaktinin %50'sini eşli programlama
ile geçirebilir. (Buradaki değer kritik değil. %35
veya %75 de olabilir.)

Eşli programlama;

Takım üyeleri arasında bilgi paylaşmanın ve bilgi

 silolarının oluşmasını önlemenin açık ara en iyi
 yoludur.

Aynı zamanda takımdaki hiç kimsenin
vazgeçilmez olmadığından emin olmanın en iyi
yoludur.
“Onu yapan arkadaş askere gitti, takımdaki
başka kimse de bu konuyu bilmiyor” söylemleri
ile karşılaşmanızı engellemenin de bilinen en iyi
yoludur.

Birçok takım, eşli programlamanın hataları
azalttığını ve tasarım kalitesini iyileştirdiğini
belirtiyor. Bu görüş de muhtemelen çoğu durumda
doğrudur. Herhangi bir sorun üzerinde birden
fazla göze ve beyine sahip olmak genellikle iyidir.

Gerçekten de, birçok takım senkron olmayan kod
gözden geçirmeleri (code review) eşli
programlama ile değiştirdiğini söylüyor.

“Ne gerek var yahu, 2 kişiye 1 iş yaptıracağımıza,
2 kişiye 2 iş yaptırırız, üretkenliğimiz 2 katına
çıkar” diyenlere Çevik Manifesto’nun 8. İlkesini
hatırlatalım:

“Çevik süreçler sürdürülebilir geliştirmeyi
teşvik etmektedir. Sponsorlar, yazılımcılar ve

 kullanıcılar sabit tempoyu sürekli devam
ettirebilmelidir.”

Kısa vadede üretkenliği 2 katına çıkartmak
mümkün ama üretkenliği sabite yakın tutmak o
kadar da kolay değil. Pair programming, MOB
Programming (çete programlama) gibi pratikler
bunun için önemli.

Görseldeki gibi fiziksel
bir çalışma koltuğu
(işin esprisi tabi) veya
uzaktan çalışma
araçları (Zoom, Teams
vs.) ile bu pratikleri
destekleyin.

Takımlarınız "testi" geliştirmeden sonra başlayacak
bir aktivite olarak görüyorsa çeviklik uğruna
yaptığınız her şeyi yeniden gözden geçirin.

67. Geliştirme ve Testin "Blender"ı

Kalite nasıl elde edilir?

"Software" birleşik bir kelimedir.

Demek ki yazılım değiştirilmesi kolay bir üründür.

Yazılım, makinelerimizin davranışını hızlı ve kolay
bir şekilde değiştirmenin bir yolunu istediğimiz için
icat edildi. Makinenin davranışlarını değiştirmenin

"Ware" kelimesi "ürün" anlamına gelir.
"Soft" kelimesi yumuşak yani değiştirilmesi,
yeniden şekillendirilmesi kolay anlamına gelir.

"Kalite, geliştirme ve testin bir blendera
koyulması ve biri diğerinden ayırt edilemez
hale gelinceye kadar karıştırılmasıyla elde
edilir."

"Quality is achieved by putting development
and testing into a blender and mixing them
until one is indistinguishable from the other."

-How Google Tests Software-

68. "Software" Kelimesinin
Hakkını Vermek

 zor olduğu bir şeyden bahsettiğimizde buna
"hardware" adını veriyoruz.

Geliştirme takımları genellikle değişen
gereksinimlerden şikayet ederler.

gibi ifadeleri sık sık duyarız.

Bir dakika: Gereksinimlerdeki bir değişiklik
mimarinizi tamamen bozuyorsa belki de mimariniz
yeterince iyi değildir. Test maliyetlerinizin yüksek
olması testleri manuel gerçekleştirmenizden
kaynaklanıyor olabilir mi?

Geliştirme takımları olarak değişimi kutlamalıyız
çünkü bu yüzden buradayız. Agile Manifesto'nun
2. ilkesi bize bunu öğütler:

"Software must be soft!" (Yazılım yumuşak
olmalıdır!) söylemi bu mesajı verir.

"Değişen gereksinimler yazılım sürecinin son
aşamalarında bile kabul edilmelidir. Çevik
süreçler değişimi müşterinin rekabet avantajı
için kullanır."

"Bu değişiklik mimarimizi tamamen bozuyor."
"Bu değişiklik bize ciddi test maliyeti çıkarır."

Değişen gereksinimler, agile dediğimiz şeyin
ortaya çıkış nedenidir. Bütün oyun bunun üzerine
kuruludur. Martin Fowler bu konuda şöyle diyor:

Değişen gereksinimler yazılım profesyonelleri
olarak kariyerlerimizin ve maaşlarımızın
gerekçesidir. İşlerimiz, değişen gereksinimleri
kabul etme, tasarlama ve bu değişiklikleri nispeten
ucuz hale getirme becerimize bağlıdır.

Agile, değişimi ucuzlatmaktır.

Yüksek kalitede kod değişimi ucuzlatır. (Agile
Manifesto'nun 9. İlkesi)
Yetkin ve motive takım üyeleri değişimi ucuzlatır.
(Agile Manifesto'nun 1. Değeri ve 5. İlkesi)
Makinenin yapabileceği şeyleri insana
yaptırmamak (otomasyon) değişimi ucuzlatır.

"Gittiğim her sorunlu projede duyduğum bir
nakarat var. Geliştiriciler bana gelip 'Bu
projenin sorunu gereksinimlerin sürekli
değişmesi' diyorlar. Bu durumda şaşırtıcı
bulduğum şey, herhangi birinin buna
şaşırmasıdır. İş yazılımı geliştirmede
gereksinim değişiklikleri normdur (kuraldır),
asıl soru bizim bu konuda ne yaptığımızdır."

https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements
https://martinfowler.com/articles/newMethodology.html#TheUnpredictabilityOfRequirements

 (Agile Manifesto'nun 8. İlkesi)
Müşteri ile etkin iletişim değişimi ucuzlatır. (Agile
Manifesto'nun 4. İlkesi)
Takım içerisindeki etkin iletişim değişimi
ucuzlatır. (Agile Manifesto'nun 6. İlkesi)
Değişimi ucuzlatmak için kafa yormak ve yeni
yollar denemek muhtemelen günün birinde
değişimi ucuzlatır. (Agile Manifesto'nun 12.
İlkesi)
Müşteriye erken ve sürekli çalışan yazılım
sunmak değişen gereksinimleri daha kolay ve
erken keşfetmenizi sağlayacağı için değişimi
ucuzlatır. (Agile Manifesto'nun 1. ve 3. İlkesi)

Şimdi dönün ve çeviklik namına kullandığınız
bütün pratikleri gözden geçirin, siz hangi
pratikler ile değişimi ucuzlatıyorsunuz?

Karşılaştığımız profesyonel yazılım geliştirme
ekiplerinin çoğu işlerini nasıl yaptıkları konusunda
deney yapmaktan, yeni yollar denemekten pek
hoşlanmıyorlar.

Bir şirkete çevik yöntemler konusunda yardımcı
olmak için dahil olduğumuzda gördüğümüz şey

69. Agile Sadece Cesurların İşidir

genellikle; ekiplerdeki kişilerin ilk şirketlerinden
öğrendikleri ve kendilerine uygun buldukları
pratikleri benimseyip bunların dışına çıkmama
eğilimde olmaları.

Bunun sebebi de oldukça açık:

Ancak üst seviye performans gösteren tüm
ekiplerin ortak özelliğinin "yeni pratikleri
araştırmaya, öğrenmeye, uygulamaya vakit
ayırması" olduğu da bir gerçek.

Ekiplerinize yeni pratikleri araştırmaları,
öğrenmeleri, uygulamaları için alan açmalısınız.
Ben söylemiyorum, Agile Manifesto 12. ilkesinde
söylüyor

Scrum Master, Kanban Master, XP Coach, Agile
Coach, Enterprise Agile Coach, Organizational
Agile Coach (ne demekse), DAC gibi rollerden
artık sizde hangisi varsa ekiplere bu alanı açmak
için savaşmalı.

"Farklı pratikleri denemek acı vericidir ve
başlangıçta üretkenliği azaltır. Üzerinizde
teslimat baskısı varken üretkenliğin azalması
isteyeceğiniz bir şey değildir."

Evet sevgili üst yönetimler;

Bu rollere sizinle savaşmaları için maaş
ödemelisiniz.

Ben de çabuk çorba seven birisi olarak diyorum ki;
belki de bu yüzden yalnızca cesurların işidir
agile.

Türkiye'de yazılım ekiplerine liderlik eden çoğu
kişinin çevik yazılım geliştirmeden anladığı ve
çeviklik için niyetlendiği şeyler, çevik yazılım
geliştirme fikrini ortaya çıkaran 17 kişinin niyetiyle
ve anlayışıyla kesinlikle aynı çizgide değil.

Senelerdir anlatmaya çalışmamıza rağmen halen:

Peki "çeviklik ekseninde sizinle ne konuşalım?"
diye sorunca da gelen cevaplar şunlar oluyor:

70. Eczaneden Tavuk İstemek:
Çeviklik Ne Değildir?

"Unit testing ile çevikliğin ne alakası var?" diye
soranlar var.
"Biz çeviklik konuşuyorduk, konu nereden pair
programming'e geldi?" diye çıkışanlar var.

Sprint süremiz 2 hafta mı olmalı, 3 hafta mı?
Takımların story point tahminlerini doğru
verdiğinden nasıl emin olacağız?
Kaynakları(!) doğru planladığımızdan, doğru
doldurduğumuzdan nasıl emin olacağız?
Bu takımdan ben yeterince çıktı alıyor muyum?
Daha fazla çıktı verebilirler mi? Bizim takımların
velocity'si düşük mü?

Bu sorular bana her zaman şu fıkrayı hatırlatıyor:

Temel bir gün eczaneye girer ve sorar; -
“Tavuk var mi hemşerim?”

Eczacı; - “Yok hemşerim burası eczane ne
arasın burada tavuk?”

Temel çıkar gider, ertesi gün tekrar gelir; -
“Tavuk var mi hemşerim?” diye tekrar sorar.

Eczane sahibi öfkeli bir sesle; - “Yok
kardeşim burası eczane sana burada tavuk
olmaz dedim ya git işine!” diye çıkışır.

Temel çıkar gider.. Ertesi gün tekrar gelir; -
“Tavuk var mi hemşerim?” diye yine sorar.

Eczacı çok kızmıştır artık Temele bağırarak; -
“Yok dedik ya kardeşim ne laftan anlamaz bir
adamsın burası eczane burda tavuk olmaz
git bir daha da rahatsız etme beni!” der.

Temel; - “Tamam da kardaşum ne kızayisun
madem tavuk yoktur camuna yazsana tavuk
yoktur diye!” der ve eczaneden çıkar gider.

Eczacı bakar ki bundan kurtuluş yok tekrar
gelmesin diye koca bir kağıda "TAVUK
YOKTUR" diye yazar ve eczanenin camına
yapıştırır.

Ertesi gün Temel tekrar gelir ve eczacıya
sorar; - “Tavuk ne zaman gelecek
hemşerim?”

Eczaneden tavuk alamazsınız!

Derdinizi doğru ifade edin ve çözümü doğru yerde
arayın.

71. “Umut ve Dua" Yöntemi:
Yazılım Projesi Nasıl Yönetilir?
Bir yazılım projesini nasıl yönetirsiniz?

Bu sorunun yanıtı olabilecek pek çok yaklaşım
yıllar boyunca denendi.

Böyle bir inanca sahip olmayanlar genellikle;
kırbaç, zincir, kızgın yağ ve kayalara tırmanan
insanların ve okyanus üzerinde uçan martıların
resimleriyle takımlarını zorlamak gibi motive
edici(!) yaklaşımlara başvururlar.

En sık gördüğümüz
yaklaşım: Umut ve Dua'dır.
Yazılım projelerinin
kaderini yöneten tanrıların
olduğuna inanan
yöneticiler arasında
oldukça popülerdir.

Bu yaklaşımlar yanlış yönetiminin (neredeyse
evrensel diyebileceğimiz) karakteristik
semptomlarını ortaya çıkarır:

Velocity gibi basit metriklerle çoğu zaman hayal
ettiğiniz şeyi hayal ettiğiniz sürede
yapamayacağınız gerçeğini yüzünüze vurur. Size
projeniz ve takımınızla ilgili haber getirir.

Çoğunlukla bu haberler "kötü" haberlerdir. Asıl
konu aldığınız bu kötü haberler karşısında ne
yaptığınızdır.

Sahi sizin şirketiniz bir yazılım projesini nasıl
yönetiyor?

Doğru uygulandığında Agile sizi bunlardan uzak
tutar.

Çok fazla mesai yapmalarına rağmen her zaman
geç kalan geliştirme ekipleri.
Müşterinin ihtiyaçlarını karşılamaya yaklaşmayan
kalitesiz ürünler üreten ekipler.

72. Müşteri Sonuca Bakar

Yazılım takımlarının müşterileri, takımın kullandığı
yazılım geliştirme yaşam döngüsü modeli veya
seçilen teknolojiler ile ilgilenmezler.

Müşterilerin önemsediği şey iş çıktılarıdır:

Bu iş çıktılarını önemseyen müşteriler
karşılarındaki yazılım takımlarından planlara uygun

Ne kadar yeni müşteri kazanabildik?"
"Karlılığımız ne durumda?"
"Müşterilerimiz memnun mu?"
"Müşterilerimiz rakiplerimizden birine kaçıyor
mu?"

çalışan yazılım teslimatı beklerler. Onlar için daha
kısa sürede daha fazla yeni özellik geliştirmenizi
isterler. Geliştirdiğiniz özelliklerin hatasıza yakın
çalışmasını önemserler.

Müşterilerinizin bu beklentisini karşılamak için
takım olarak DORA metriklerini ölçmeniz ve
bunları sürekli olarak iyileştirmeye çalışmanız
gerekir.

Her bir DORA metriğini etkileyen birden fazla öncü
(leading) metrik vardır. Bir DORA metriğini
iyileştirmek için bu öncü metrikleri de ölçmeniz ve
iyileştirmeniz gerekir.

Bir yazılım takımı çevikliği; Agile Manifesto'yu
duvara asarak, eskiden Genel Müdür Yardımcılığı
dediği fonksiyonel yapılara "Garaj" diyerek elde
etmez.

Müşterisinin önemsediği şeylere etki eden
metrikleri ölçerek ve sürekli iyileştirerek elde
eder.

Sizin takım hangi metrikleri ölçüyor?

73. 17 Beyaz Adamın İsyanından,
Oyun Ablalığına
Organizasyonların Scrum Master, Agile Coach
veya Agile danışmanı seçimlerini sürekli neden
eleştirdiğimi soranlar oluyor. Sebebini buradan
açıklayayım:

Sene 2001, Yer Snowbird-Utah, 17 Beyaz Adamın
arasında geçen muhabbet...

"Yazılım geliştirmenin doğası hakkında hiçbir şey
anlamayan insanlar bize nasıl çalışmamız
gerektiğini anlatıyor ama önerdikleri şeyler hiçbir
işe yaramıyor. Yazılım geliştiricilerin işlerinin
kontrolünü ele almaları gerekiyor. Bunu nasıl
yapabiliriz?”

Sene 2023, Yer Türkiye, organizasyonların
çoğunda Scrum Master, Agile Coach veya Agile
Danışmanı olarak çalışan insanlar:

"Yazılım Geliştirme konusunda hiçbir şey
anlamamıza gerek yok. Geliştiricilerin aslında nasıl
düzgün çalışacaklarını anlayabilmeleri için, onlara
KOÇLUK yapacak birine ihtiyacı var.

Automated testing veya devops pratiklerinden
banane, ben GÜÇLÜ SORULAR sormak için
buradayım. Bir iki retrospective toplantısında da
eğlenceli oyunlar oynatırım, olur biter."

74. Garanti Yok, Deney Var:
İyileşmenin Tek Yolu
Birlikte çalıştığımız çevik takımlara bazen iş yapış
şekillerinde "yeni" bir şey denemeleri için
önerilerde bulunuruz.

Çoğu zaman takımdaki birkaç üye önerdiğimiz bu
"yeni" şeyin çalışıp çalışmayacağından emin olup
olmadığımızı sorar.

Peki biz bu "yeni" şeyin işe yarayacağından emin
miyiz?

Kesinlikle hayır.

Peki böyle bir durumda ne yapıyoruz?

Takıma dönüp şunu söylüyoruz:

"Önerdiğim bu 'yeni' şeyin çalışıp
çalışmayacağını bilmiyorum.

Peki siz neyin hiç bir zaman çalışmayacağını
biliyor musunuz?

'Yeni' bir şeyler denememek."

Denemekten korkarsanız iyileşemezsiniz.

Çevikliğe giden yol küçük deneylerden oluşuyor.

Yazılım ürünü geliştirmede karşılaştığımız en
büyük sorunlar:

75. Yazılımın 3 Büyük Düşmanı

1.Problemi yanlış anlamak: Bu durum genellikle
problem çözücülerin çok fazla aracı kişiyle
çalışması nedeniyle ortaya çıkıyor. Kulaktan
kulağa oyununa devam ettiğimiz sürece doğru
çözümü ortaya çıkarmak güçleşiyor.

2.Geribildirim almadan çok uzun süre çalışmak:
Bu aşırı iyimserliğin bir biçimi. "Karanlığa doğru
gitmek" olarak da ifade edebiliriz.

3.Ezici karmaşıklık: Sistemler basit başlar ve
sonunda büyük, anlaşılmaz karmaşalara
dönüşür. Sürekli düzeltme olmadan bu durum
daha da kötüye gider.

Bu 3 durum göz önüne alındığında Çevikliğin bize
öğütlediği şeylere ulaşırız:

Gelin çevik yazılım geliştirmenin odaklandığı
“doğru ürünü yapmak”, “ürünü doğru yapmak
(kalite)” ve “hızlı yapmak” üçlüsünü herhangi bir
iş alanına uyarlayalım.

Çevik düşüncede en fazla önemsenen şey müşteri

1.Aracıları olabildiğince azaltın: İşi talep edenin
sesini işi yapacak insanların kulağına yaklaştırın.
Geliştiriciler mümkün olduğunca sorunu yaşayan
kişilerle doğrudan işbirliği yapmalı ve bunu
yaparken etkili olacak bağlam ve desteği
sağlamalıdır.

2.Küçük adımlarla çalışın ve geribildirim alın:
Daha küçük adımlar atın. Her adımı test edin.
Yazılım ürünleri geliştirirken kendinize
yapabileceğiniz en büyük kötülük büyük bir şeyi
tek seferde yapmaya çalışmaktır.

3.Daha basit tasarımları tercih edin ve tasarım
geliştikçe sadeliği korumak için temizlik yapın:
Refactoring'in XP'nin en önemli pratiklerinden
biri olmasının nedeni tam olarak bu madde.

76. İK'da Çeviklik ve 3 Boyut

memnuniyeti. (Bkz. Agile Manifesto İlke 1)

O zaman başlamamız gereken yer burası. Hangi iş
alanında olursanız olun, kendinize önce şu soruları
sormanız lazım:

“Müşterim kim?”
“Ona sağlamam gereken değer / fayda ne?”

Örneğin bir İşe Alım Takımıysanız müşteriniz
organizasyonunuzda açık pozisyonları bulunan
departmanlardır.

1. Doğru Ürünü Yapmak (Değer)

Bu departmanlar için doğru adayları bulur veya
uygun olmayan adayları süreçten elerseniz onlar
için değer üretmiş olursunuz. Demek ki çevik
yazılım geliştirmedeki “doğru ürünü yaptık mı?”
meselesi bir işe alım takımı için “doğru adayı
bulduk mu?” halini alıyor.

Pek tabi bu aynı zamanda ölçmemiz gereken bir
şey:

Yerleştirdiğimiz adayların ne kadarı ile

 organizasyon 2 aylık deneme süresi sonunda
 yolları ayırma kararı alıyor?

İşe yerleştirdiğimiz adayların hedef
gerçekleştirme rasyoları ne durumda?

2. Ürünü Doğru Yapmak (Kalite)

Çevik yazılım geliştirmede 2. boyutumuz “ürünü
doğru yapmak” yani kalite. Bu örnekte bu boyutu
“İşe alım sürecimize dahil olan paydaşlara nasıl
bir deneyim yaşatıyoruz?” şeklinde ele alabiliriz.

Bu boyutta nasıl iş çıkarttığımızı şu sorularla
ölçebiliriz:

3. Hızlı Yapmak (Hız)

Ve son olarak “hızlı yapmak”. Bu boyut zaten
kendini anlatıyor.

“Sürece dahil olan adaylar ve yöneticiler
sunduğumuz deneyimden ne kadar
memnunlar?”
“Süreci olumsuz sonuçlanan adaylarla nasıl
iletişim kurduk?”
“Süreç içinde tüm paydaşlar için yaptığımız
bilgilendirmeler yeterli miydi?”

“Bir personel talep formu önümüze geldiği andan
pozisyonun kapandığı ana kadar ne kadar
zaman geçiyor?”
“Doğru bir adayı ne kadar sürede alabiliyoruz ya
da uygun olmayan bir adayı hızlıca eleyebiliyor
muyuz?”

Demek ki bir işe alım takımı için çeviklik bu 3
boyutu sürekli olarak iyileştirmeye çalışmak
anlamına geliyor.

Peki nasıl?

Yanıt belli: Otomasyon ile, yapay zeka ile,
süreçlerimizde değişiklik yaparak. Bugün
yapmadığımız farklı şeyler deneyerek.

Çeviklik; sadece Scrum, Kanban gibi metotları
uygulamaktan ibaret değil. Hatta bu metotlar
yukarıda bahsettiğimiz 3 boyuta hizmet etmiyorsa
anlamsız ve gereksiz.

Odaklanmamız gereken şey kendi alanımız için bu
3 boyutu nasıl iyileştirebileceğimiz. Hatta belki de
bir süre sonra; "İşe alım takımı yerine her
fonksiyon kendi işe alımını kendi yapsa bu 3

boyutta çok daha iyi bir hale gelebiliriz" gibi bir
sonuca ulaşabilirsiniz.

Yani çeviklik yeri geldiğinde kendinden de
vazgeçmeyi gerektirebiliyor.

Farklı iş alanlarında “çevikliğin” peşinde olanlara
bir başlangıç noktası sunması temennisiyle.

Yazılım geliştirmede gerçek çeviklik için sağlam
mühendislik pratiklerine ihtiyacınız vardır.

Bizimle benzer işler yapan pek çok
eğitim/danışmanlık şirketi maalesef bunları
yeterince vurgulamıyor. Neden? Çünkü pek çok
danışmanın/eğitmenin yazılım geliştirme
konusundaki tecrübesi sıfıra yakın. Hayatında
"Hello World" yazmamış insanlar Scrum ile nasıl
çevik olunabileceğini, Kanban'ın ne kadar
muhteşem bir yöntem olduğunu anlatıyor, satıyor.

Eğitim ya da danışmanlık verdiğimiz pek çok
kurumda "Daha önce de çeviklik konusunda eğitim

77. Gerçek Çeviklik ve
Mühendislik Pratikleri

m ve/veya danışmanlık aldık; ancak hiçbiri sizinki
kadar iyi değildi." söylemlerini duymamızın en
önemli sebebi bence bu.

Eğer çeviklik mühendislik pratiklerini gözden
kaçırırsanız, çevik yazılım geliştirmenin size
sağlayabileceği "üretkenlik" ve "yanıt verebilirlik"
faydalarını elde edemezsiniz (ya da çok azını elde
edebilirsiniz). Extreme Programming'in çevik
yöntemler arasında en değerlisi olduğunu
düşünmemin nedenlerinden biri de bu.

Çeviklik için size Lego ile Scrum, bozuk para
oyunu ile Kanban anlatılan eğitimlerden daha
fazlasına ihtiyacınız var. Ancak bu yolda kan var,
ter var, gözyaşı var.

Bunlar ilginizi çekiyorsa arayın, görüşelim.

diyorsanız, size başarılar dilerim.

"Bunlar bize gelmez hocam, kimi gönderelim
5 gün TDD eğitimine, biz 2 haftalık
sprintlerde planladığımızın yarısını deliver
etmeye devam edelim."

78. Agile Nedir? En Net Cevap: 4
Adımda Çeviklik
Agile konusundaki her sohbette bize gelen bir
soru: "Yaw nedir şu Agile, her kafadan bir ses
çıkıyor, şunu birkaç cümle ile açıklar mısın?"

Buradan bir kez daha açıklayayım:

Bu 4 adımı gerçekleştirebiliyorsanız çeviksiniz,
gerçekleştiremiyorsanız üzgünüm ama çevik falan
değilsiniz.Hikaye bu kadar basit ancak bu 4 adımı
sürekli olarak yapabilmek o kadar basit değil.

Özetle: Yukarıdaki 4 adımı kolaylaştıran her şeye
sıkı sıkı sarılın, yukarıdaki 4 adımı zorlaştıran veya
bu adımlara etkisi olmayan şeylerden bir an evvel
kurtulun.

1.Küçük bir şey inşa edin,
2.Bunu kullanıcıya sunun,
3.Geribildirim alın,
4.Aldığınız geribildirimle ürettiğiniz küçük şeyi

değiştirin ve/veya 1 nolu adıma geri dönün ve
sonsuza kadar (ya da en azından biri size artık
inşa ettiğin şeyler değer oluşturmuyor diyene
kadar) tekrarlayın.

İşte size "Çevik Dönüşüm Yol Haritası".

Kolaylıklar.

Tüm Çevik yöntemler arasında XP en iyi
tanımlanmış ve en eksiksiz olanıdır.

Hemen hemen tüm diğer Çevik yöntemler XP'nin
bir alt kümesi veya bir varyasyonudur. Agile'ın
gerçekte neyle ilgili olduğunu anlamak istiyorsanız
XP’yi öğrenmek ve deneyimlemekten daha iyi bir
yol yoktur.

XP, Agile'ın en temel prototipi ve en iyi
temsilcisidir.

Agile eğitimlerinde ve/veya danışmanlık
projelerinde size XP hakkında hiç bir şey
söylemeyen/söyleyemeyenlerden uzak durursanız
paranızı ve zamanınızı israf etmemiş olursunuz.

Siz eğitim ve danışmanlık işlerinizle neyi farklı
yapıyorsanız diye soranlara verdiğimiz cevap da
budur:

79. Agile'ın Prototipi

“Biz gerçek çevikliğin peşinde olduğumuz
için takımlarınızı XP pratikleri konusunda
yetkinleştiriyoruz.”

80. Geri Bildirim Yoksa Çeviklik
Yoktur

XP gibi gerçek çevik yöntemlerin içerdiği
pratiklerin neredeyse tamamı önemli kararlar
veren kişilere hızlı geribildirim sağlamaya
yöneliktir. Kullandığınız pratikler bir geribildirim
fırsatı yaratmıyorsa, o pratiği tekrar gözden
geçirin.

Planlama Oyunu, Refactoring, TDD, CI, Küçük
Sürümler, Toplu Sahiplik vb. pratikler geribildirimin

sıklığını ve miktarını en üst düzeye çıkarır.

İşlerin ne zaman yanlış gittiğini belirlememize,
bunları düzeltmeye yetecek kadar erken karar
vermemize olanak tanırlar. Daha önceki kararların
sonuçları hakkında bize çokça bilgi sağlarlar.

Çevik takımlar geribildirimle gelişir. Geribildirim,
çevik takımların etkili çalışmasını sağlayan
şeydir.

Çevik olmak istiyorsanız görselde gösterildiği gibi
olabilecek en alt seviyeden başlayarak size her
seviyede geribildirim sağlayan pratikler kullanın.

Ek not: Scrum görseldeki parçalardan sadece
Sprint Review / Demo etkinliğini içeren bir
çerçevedir. Tek geribildirim pratiğiniz bu ise size
bol şans dilerim.

Türkiye'de Scrum'ın geldiği nokta işçi
sendikalarının geldiği nokta ile büyük benzerlikler
içeriyor.

81. Sendikalaşan Scrum

Görünüşte işçileri desteklemek üzere kurulan
sendikalar, bir süre sonra yalnızca kendini
sürdürmeye odaklanıyor.
Görünüşte yazılım geliştirme işinde daha başarılı
olma ihtimalimizi arttırmak için tasarlanmış
minimal bir çerçeve olan Scrum, bir süre sonra
yalnızca kendini sürdürmeye odaklanıyor.

Herkese dağıtılan PSM, PSPO sertifikaları,
Scrum temalı saçma sapan etkinliklere sponsor
olmalar,
Çıktıları kimse tarafından dikkate alınmayan
ancak "bol oyunlu" retrospective toplantıları...

Scrum ile çevikleşmeye çalışan her şirkette olay
bir noktada şuraya evriliyor:

"Bireyler ve etkileşimleri süreçler ve araçlardan
daha değerli görmek lazım" demiş olan çeviklik
kanaat önderlerinden bazılarının da bu durum
karşısında içi sızlıyor.

"Scrum'ı Scrum için yapma" hali
organizasyonları ele geçiriyor.

82. Agile Öldü mü? Yoksa Dogma
mı Oldu?
Popüler tartışma konusu: “Agile öldü mü?”

Doğal olarak eğitim-danışmanlık işlerimizde denk
geldiğimiz sektör profesyonelleri bana da
soruyorlar bu tarz soruları.

Cevabımı burada da paylaşayım istedim:

Bugün kullandığımız "çevik" yöntem ve teknikler,
projelerin genellikle birkaç yıl(?) sürdüğü
1990'larda ortaya atıldı.

Bu arada (30 küsür yıl geçmiş olmasına rağmen)
yaklaşımlarında neredeyse hiçbir şey değişmedi
ve “çevik” yöntem ve teknikler yerini almak
üzere tasarlandıkları dogmanın kendisi haline
geldiler.

“Agile ölmedi ama evriliyor. Daha doğrusu
artık evrilmesi gerekiyor.”

“Agile öldü diyorlar, ne diyorsun?”
“Hocam bunun modası geçmedi mi?”
“Agile’dan sonra sırada ne var?“

XP fanatiklerinin yerini Scrum bağnazları aldı,
Scrum bağnazları kendi içinde savaşan gruplara
bölündü ve tüm bunlar olurken insanlar işbirliğinin
ve insanları sürecin önüne koymak gibi orijinal
çevik değerleri gözden kaçırdılar.

İyi uygulansalar bile bu yaklaşımlar çok aylı sürüm
döngüleri için optimize edilmiş şeylerdi ve artık
bayatladı.

Teknoloji ilerledi: Eskiden yüzbinlerce dolara mal
olan ve tedarik edilmesi aylar süren altyapı artık
talep üzerine fındık fıstık parasına temin
edilebiliyor. Ama biz yine de 20-30 yıl önce
yaptığımız şeyleri hâlâ yapıyoruz. Ve buna hala
“son teknoloji” diyoruz.

20-30 yıl önce geliştirilmiş bazı konseptler o yıllar
için bir devrim niteliğinde olsa da bugün birçok kişi
artık Scrum – Agile laflarından bıktı. Köprünün
altından çok sular aktı.

Arada geçen zamanda insanlar şunları çokça
gördü, deneyimledi:

Sayısız başarısız dönüşüm.
Etkisiz Scrum Master'lar.

Peki gerçekten sırada ne var?

Yakında aşağıdaki şeylere olan talebin azalması
gerektiğini ve azalacağını düşünüyorum:

Organizasyonlara Waterfall’dan Agile'a
dönüşüm için rehberlik eden Dönüşüm
Uzmanları. Buna artık gerek yok çünkü en
küçüğünden en büyüğüne artık her yer çevik
yöntemleri şu veya bu şekilde kullanıyor. Agile
mainstream (ana akım) haline geldi.

Scrum'ın temellerini öğreten Scrum Master
veya Koçlar / Eğitmenler. 10 küsür sayfa
dokümanı olan bir yöntem için içi lego
oyunlarıyla doldurulmuş 2-3 günlük eğitimlere
gerçekten gerek var mı?

Belirli çerçeveleri mekanik şekilde
uygulatmaya odaklı Çevik Koçlar. İçinde
bulunduğu bağlamı anlamadan kitaptan okuduğu
şeyleri çoğu zaman yanlış şekilde yorumlayarak
koca koca şirketlerin yazılım geliştirme
süreçlerinin içinden geçen sevgili Çevik Koçlar...
Evet, bahsettiğim o koçu siz de tanıyorsunuz.
Çünkü muhtemelen son 1 yıldır takımınızı /

 şirketinizi çevikleştirme vaadi ile sizi içinde
 bulunduğunuz ortama/duruma hiç de uygun
 olmayan şeyler yapmaya zorlayan “O Koç”.

Peki neyden daha fazla göreceğiz?

O da bir sonraki postun konusu olsun artık.

Agile'ın ölmediğini ancak evrildiğini (daha doğrusu
evrilmesi gerektiğini) söylemiştim. Ayrıca, yakın
gelecekte bu alanda yaşanması muhtemel
değişimleri (neleri daha az göreceğiz) kısaca
listelemiştim.

Şimdi ise yakın gelecekte nelere olan ilginin
artacağına dair bir şeyler karalayayım, yani
medyumluğa devam edeyim.

“Hocam danışman firmanın yolladığı çevik
koç takımdan ayrıldığında gerçek çeviklik için
bir şeyler yapabileceğiz inşallah” demenize
neden olan “O Koç”.

Katı, kuralcı çerçeveler.

83. Metot Polisliğinden, Teslimat
Koçluğuna

Bizim alanda yakın gelecekte ben şunlara daha
fazla ihtiyaç olacağını ve dolayısıyla
piyasanın/insanların bu tarafa doğru evrileceğine
inanıyorum (ya da inanmak istiyorum):

Özetle, katı çerçevelerden ve bunların
polisliğinden uzaklaşarak; kuruma/takıma özel
olarak hazırlanmış, bağlam odaklı bir yaklaşıma
doğru geçiş olacağını bekliyorum.

Yöntem Polisliği Yerine Gerçek İhtiyaç: Scrum
gibi çerçeveleri takımın gerçek ihtiyaçlarını
görmezden gelerek dikte eden ve yöntem
polisliği yapan koçlar yerine; takımın "gerçek"
ihtiyaçlarına odaklanan ve çerçevenin içini başka
şeylerle doldurabilen ve/veya gerektiğinde
çerçeveyi yeniden tanımlayabilen koçlar.

Adaptif Metotlar: Kendi bağlamınıza göre daha
rahat eğip bükebildiğiniz Kanban gibi adaptif
metotlar ve bu tarz metotlar içerisinde
geliştirdikleri pratiklerle takımların hayatını
iyileştiren insanlar.

Yeni Yaklaşımlar:Flight Levels, FaST gibi açık
yaklaşımlar.

Ve daha önceki gönderide bahsettiğim gibi "Agile
- Scrum - Scrum Master - Agile Coach" laflarının
insanlarda yarattığı bıkkınlığı ortadan
kaldırabilmek için (bahsettiğim bıkkınlığın
seviyesini görmek için Ekşi Sözlük'te "agile coach"
anahtar kelimeleri ile bir arama yapmanız yeterli)
belki bu işlere kafa yoran ve gerçekten ellerini
kirleten profesyoneller olarak artık İş Esnekliği
Uzmanı ("Business Flexibility Expert") veya
Teslimat İyileştirme Koçu ("Delivery
Improvement Coach") gibi ünvanlarla anılmamız
gerektiğine inanıyorum.

Çünkü çeviklikle asıl amaçladığımız şeyler bunlar;
Scrum Guide'dan ezberlediğimiz havalı cümleleri
insanların üzerine fırlatmak değil.

84. Agile vs. Gerçek Dünya

85. Gerçek Performans Nerede
Gizli?

Bir ekipteki
bireyleri
değerlendirecek
seniz gerçek
katkıda
bulunanların kim
olduğunu
anlamak için
diğer takım
üyelerinin (peer)
geribildirimini
kullanın.

gibi sorular sorun.

“Bu takımda en çok kimin olmasını istiyorsunuz
ve neden?”
“Gelişmesine yardımcı olmak için Onur'a ne gibi
tavsiyelerde bulunursunuz?”
“Serkan'dan en çok ne öğrenmeyi istersiniz?”

Zeki bir yönetici, bu geribildirimlerdeki olumlu ve
olumsuz kalıpları ve eğilimleri hızlı bir şekilde
görecektir ve bunlar daha sonra eyleme
geçirilebilir.

Yaşar Safkan’ın söylediği gibi:

86. "Aşırı Çeviklik" Yanılgısı

“Olum biz zaten aşırı çeviğiz, production’da
kod değiştiriyoruz, test yapıyoruz. Bundan
daha çeviği yok ki. Gerçek çeviklik için
bizim biraz yavaşlamamız lazım.”

87. Çevik Dönüşüm ve Kabul
Kriterleri Sorumluluğu

diyen PO'lar, iş birimleri, müşteriler burada mı?

"Çevik değil misiniz kardeşim, o kadar
dönüşüm yaptık diyorsunuz, kabul kriterlerini
de bir zahmet siz çıkarın, onu da mı ben
söyleyeceğim."

88. Retrospective Toplantıları ve
Takım Metrikleri

Retrospective toplantılarında oturup takım
metrikleriniz hakkında konuşun.

Eğlenceli zannettiğiniz oyunlar takım üyelerine o
kadar da eğlenceli gelmiyor olabilir.

89 - 90. Scrum Master Seçimi ve
Tecrübe

2 ay önce işe başlayan takımdaki en junior tester
arkadaş çok hevesliydi, gönüllü oldu, biz de
kendisini Scrum Master yaptık.

91. Scrum Adı Altında Kanban
Uygulaması

Nerede adına "Scrum" diyip aslında "Kanban"
yapanlar ve bunun farkında olanlar?

92. 2024: Enkaz Toplama Yılı ve
Hatalı Agile Dönüşümleri

2024 bizim için tam bir "enkaz toplama" yılı oldu.
Bizden danışmanlık hizmeti talep eden pek çok
kurum bizden önce bir danışmanlık şirketi ile agile
dönüşüm meselesine bulaşmış ancak geldikleri
son noktada dönüşüm öncesi günlerini arar hale
gelmişler.

Bu kurumlardaki çalışanlar kendilerine saçma
gelse de danışman firmadan gelen (iş bilmez
ancak ne hikmetse yönetimin desteğini arkasına
almış) insanların hiç bir dayanağı olmayan
tamamen keyfi ve basmakalıp önerileri ile yazılım

 geliştirme süreçlerinde değişiklikler yapmak
zorunda kalmışlar.

"Neden itiraz etmediniz?" diye sorduğumda:

"Hocam yönetim kademesinde ciddi etkileri var,
bizim sesimiz oralara ulaşmıyor." dediler.

("Kim bilir belki yönetiminiz de iş bilmiyordur"
dedim içimden)

Muhabbettin sonrası malum:

"Hocam eskiden gerçekten daha iyiydi bizim
süreçler, şu danışmanlardan bir kurtulalım, tekrar
yoluna koyacağız."

93. 'Büyük Çerçeve' Tuzağı

Bir probleminiz var: Takımlarınız iş problemlerinizi
çözecek yazılımları üretmek için çok çaba
harcıyor; ancak kullanılmayan özellikler ile dolu ve
ciddi kalite problemleri olan şeyler üretiyorlar. Siz
bu durumu tersine çevirip doğru çözümleri,
yüksek kalitede ve olabilecek en yüksek hızda
üretmek istiyorsunuz.

Birileri bu probleminizi 3-4 harften oluşan isimlere
sahip sertifikaları, sektörünüzden ve yazılım
işinden hiç anlamayan danışmanları ve
eğitmenleri, ismi havalı olan ve sevimli görünen
rolleri, tuhaf jargonları ve toplantı olarak

adlandırılmayan sonsuz toplantıları olan (adı da
güven veren) Büyük Bir Çerçeve ile çözmeyi
öneriyor ve siz de verdikleri bol sıfırlı teklifi kabul
ediyorsunuz.

Üzgünüm, artık iki probleminiz var.

Madem ki çevik oldunuz,
artık gereksinimleri de
telepati yoluyla ortaya çıkarın
bir zahmet, ne istediğini de iş
birimi mi söylesin?

94. Telepati Beklentisi

95. Araçlar Var Ama Sonuç Yok

Ama hâlâ işler yavaş, müşteri mutsuz ve ekip
yorgun, yılgın, bıkmış...

Peki neden? Çünkü:

Scrum var.
Jira var.
Daily var.

1."Ne için" dönüştüğünüzü bilmiyorsunuz.
2."Neye" dönüşmeniz gerektiği de bilmiyorsunuz.
3.Dönüşenlerin ne yaşadığını, nasıl bir süreçten

4. Bu dönüşümden ne "fayda" beklediğinizi
tanımlamadınız. Daha kötüsü, bir fayda sağlanıp
sağlanmadığını da ölçmüyorsunuz.
5. Danışmanlar bir şeyler söylüyor, siz de 'bize her
şeyi onlar öğretir' diye düşünüp
sorgulamıyorsunuz. Danışmanların sizden daha
çok bildiğini varsayıyorsunuz, itiraz etmiyorsunuz.
Zaten yönetiminiz de danışmanlarınızı
sorgulamıyor. "Onlar ne derse öyle yapılacak"
diyip, işin kolayına kaçıyor.
6. Yönetim "siz dönüşün" diyor ama kendisi eski
alışkanlıklarla devam ediyor. Liderlik ortada yok.
7. Deney yapmıyorsunuz, "Bize birisi tam ne
yapacağımızı söylesin, biz de ona göre çalışalım"
diyorsunuz.

Unutmayın: Agile bir etiket değil, bir zihniyet
dönüşümüdür. Görünür bir iyileşme yoksa,
dönüşüm sadece PowerPoint’te kalır.

Binlerce dolar harcanan danışmanlık projelerinden
sonra, ekiplerin ve müşterinin yüzü hâlâ bu
görseldeki gibi donuksa... Orada bir sorun vardır.

Hem de büyük bir sorun.

96. Scrum Expansion Pack ve
Yeni Sektör Kakafonisi
Scrum Expansion Pack yayınlandı ve yine bir
kakafoni başladı.

Danışmanlar, koçlarınız aşağıdaki cümleleri
üzerinize doğru fırlatıyorlarsa oradan koşarak
uzaklaşın:

Scrum tek başına bugüne kadar hiç bir yere
gerçek çeviklik getirmemiştir ve ne kadar
güncellenirse güncellensin tek başına gerçek
çeviklik için yeterli olmayacaktır. AI da benzer
şekilde gerçek çeviklik için sınırlı bir etki
sağlayabilir.

Asıl olan müşteriyi merkeze koyarak onun için
"doğru ürünü" üretmektir. Yazılımda en zor şey
tam olarak ne üretileceğine karar vermektir. Geri
kalan hiç bir aktivite bundan daha zor değildir.

"Scrum is evolving"
"Scrum must adapt fast"
"AI is reshaping our workflows"
"Not Agility, AIgility"
"Scrum Expansion Pack published"

Ürünü doğru üretmek ve hızlı üretmek bundan
sonra gelir.

Doğru ürünü üretmek müşteri etkileşimi gerektirir,
geribildirim gerektirir. Dolayısıyla halen en önemli
şey bireyler ve onlar arasındaki etkileşimlerdir.

Sektör 20 yıl sonra Agile'dan sonra tüketebileceği
yeni bir kavram buldu. Yürüyün bakalım buradan,
bunun da içini boşaltırsınız 1-2 seneye.

97. "Scrum Expansion Pack" diye
başlayan cümleler vs. Batman

98. Yazılım Takımlarının Sağlığını
Ölçmek: DORA Metrikleri

"Yazılım takımlarının sağlığını nasıl ölçeriz?" diye
sık sorulur. Cevaplar genellikle şöyle başlar:

Spoiler: Bunlar fazla lokal ve yanıltıcı olabilir.

Gerçek resme bakmak istersen, DORA metrikleri

“Takım kaç iş bitirdi?”
“Sprintten kaç story çıktı?”
“Üretim ne kadar sürüyor, kısa mı?”
“Velocity’miz arttı mı?”

 daha işe yarar:

Eğer bu metriklere ilk kez denk geliyorsanız:

1.Lead Time: Bir fikrin ya da sorunun fark
edilmesinden, çözümün kullanıcının eline
ulaşmasına kadar geçen toplam süre.

2. Deployment Frequency: Ne sıklıkla değer
sunuyorsunuz? Küçük parçalar = Daha sık
gönderim. Haftada birkaç gün idealdir. Her gün?
Harika!

3.Başarısız Dağıtım Oranı: Kaç dağıtım geri
alınmak zorunda kaldı? Kaç özellik “müşteri
problemini” çözmedi? (Sadece teknik değil, iş
değeri açısından da düşünün.)

4.Recovery Süresi (MTTR): Bir hata olduğunda ne
kadar sürede toparlıyoruz? Sadece sistem hatası
değil… Kullanıcıyı hayal kırıklığına uğratmak da bir
hatadır.

Sadece üretim zamanınız (cycle time) değil.
Takımın iş bitirme hızı da değil.
Ürünü piyasaya çıkarma yolculuğunuzun ne
kadar hızlı olduğu.

Nichole Forsgren’in “Accelerate” kitabını mutlaka
okuyun.
https://dora.dev/ sitesine göz atın.

Unutmayın: Yüksek velocity, tek başına iyi
süreç demek değildir.

Gerçek başarı = “Ne kadar değerli, ne kadar
kaliteli, ne kadar hızlı” ölçebilmektir.

99. İşte Bunlar Hep Mindset!

100. Agile Dönüşümünün Bir
Bedeli Vardır
Geldik serinin 100. gönderisine. Ne yazsam, kime
seslensem diye düşündüm ve herkese özellikle
liderlere çok temel bir şeyi hatırlatayım istedim.

Agile, hız kazandırır, müşteriyle bağı güçlendirir,
ekipleri motive eder. Ama çoğu liderin gözden
kaçırdığı bir gerçek var: Bu dönüşümün de bir
bedeli vardır. Hem de sağlam bir bedeli.

İşte dönüşümün gerektirdiği temel yatırımlar:

“Agile dönüşümünün bir bedeli vardır.”

Altyapı yatırımları: Test otomasyonu, sürekli
entegrasyon, release otomasyonu olmadan
çeviklik sadece bir slogan olur.

Organizasyonu yeniden yapılandırma: Yeni
roller, çapraz fonksiyonel ekipler, farklı iş yapış
biçimleri… “Eski yapıyla yeni kültür” yola devam
edemez.

Yeni beceriler: Dikey hikâye dilimleme,
retrospektif yürütme, çevik mimari, TDD,

 refactoring gibi yetkinlikler zamanla gelişir.
 Bunlar için ekiplere eğitim ve koçluk desteği
 gerekir.

Yeni alışkanlıklar: Sık müşteri teması, kısa
teslimatlar, ekip üyelerin kendi uzmanlıkları
dışında da yetkinlikler geliştirmesi — bunlar da
disiplin ister.

Şeffaflık acısı: Problemler görünür hale gelir.
Hem de çok hızlı bir şekilde. Neden teslim
edemediğinizi hemen görürsünüz. Bu kötü bir
şey değildir, ama çoğunlukla insanların konfor
alanını sarsar.

Son söz:

Bu dönüşüm “Big Bang bir dönüşüm” değildir. Bir
anda değil, yukarıdaki alanlarda atılacak bilinçli
adımlarla olgunlaşır. Çoğu zaman bu konuda
tecrübeli bir iş ortağı ile yürütülmesi gerekir. (Bu
satırda ürün yerleştirme yapılmıştır: Sharpware �)

Melike Şahin güzel söylüyor, "bedelini ödeyin".
Yoksa dönüşümünüz sadece havalı laflardan
ibaret olur.

https://www.sharpware.co/
https://www.sharpware.co/
https://www.sharpware.co/

101. Teknik Borç ve "Sonra
Düzeltiriz" Tuzağı

Teknik Borç (Technical Debt), kredi kartı borcuna
benzer; borcunuzu ödemezseniz bir gün o kart
patlar!

Yöneticilerin ya da müşterilerin "Hadi bu sprint de
böyle geçsin, sonra düzeltiriz" laflarına kanıp,
faizini bile ödeyemeyeceğiniz bir borç batağına
sürüklenmeyin.

"Teknik borç, çoğu zaman iş kararı olarak
ertelenen teknik iştir ama çok hızlı bir şekilde
ciddi bir iş problemine dönüşür."

Eğer her yeni özelliği eklemek bir öncekinden iki
kat daha uzun sürüyorsa, o "sonra düzeltiriz"
dediğiniz kodlar artık çürümüş demektir. Yazılım
geliştirme işi ile ilgili çok sevdiğim sözlerden biridir
"Later means never!"

Çevik olacağım derken iflas bayrağını çekmeyin.
"Sonra" diye bir zaman dilimi yazılım dünyasında
yoktur, o borcu şimdi ödeyin!

Peşin ödeyemiyorsanız en azından her iterasyon
taksit taksit ödeyin.

Ofis duvarlarına astığınız veya havalı ekranlarda
görselleştirdiğiniz o rengarenk grafikler
(Information Radiators) sadece üst yönetime "her
şey yolunda" demek için oradaysa, size geçmiş
olsun.

Bilgi panoları "Stark" (Çıplak) olmalıdır. Yani
problemleri halının altına süpürmek için değil,
kabak gibi ortaya çıkarmak için kullanılmalı.

102. Bilgi Panoları ve "Karpuz
Proje"

Eğer panolarınızda sürekli "Her şey Yeşil", "Proje
Harika Gidiyor" yazıyor ama takımınızdan biri çay-
sigara muhabbetinde bana "abi çok kötü
patlayacağız, kimse de ses çıkarmıyor" diyorsa,
buna şeffaflık denmez, "Karpuz Proje" (Dışı yeşil,
içi kıpkırmızı) denir.

Gerçek çevik takımlar, problemleri gizlemek için
değil, canlarını sıksa bile herkes görsün ve
çözülsün diye asarlar o grafikleri.

Videoyu izlemek için görsele tıklayın!

https://www.linkedin.com/posts/onurozc_nas%C4%B1l-agile-%C3%A7evik-olunmaz-post-no-102-activity-7406937467695714304-RsAe?utm_source=share&utm_medium=member_desktop&rcm=ACoAADoyQ00BbqvT5LNH5K-MMgkPrZ99YYRhEcA

103. Daily Scrum ve Tekmil
Verme Yanılgısı

Stand-up (Daily Scrum) toplantılarını yöneticinize
"Dün şunu yaptım efendim, bugün de bunu arz
edeceğim" şeklinde bir tekmil verme seansına
çevirmeyin.

Bu toplantıların amacı takımın iş birliğini
başlatmasıdır, yöneticinin egosunu tatmin etmesi
değil.

Eğer Daily bittiğinde takım arkadaşınızın hangi
problemle boğuştuğunu bilmiyorsanız ama
yöneticiniz "tamam herkes çalışıyor" diye
mutluysa, o toplantıyı yapmasanız da olur.

Statü raporu verecekseniz mail atın, milleti 15
dakika (ki sizde o kesin 45 dakikadır) ayakta
dikmeyin.

104. User Story Yanlışları ve
INVEST Prensibi
User Story (Kullanıcı Hikayesi) yazarken INVEST
prensibini hiçe sayıp, Jira'ya "Veritabanında XYZ
tablosunu oluştur" diye story girenler... Size de
merhaba!

"Kullanıcı bunun neresinde?" diye sorunca "E
developer da bir kullanıcıdır" diye felsefe
yapmayın.

Hikayeleriniz Test Edilebilir (Testable) ve Değerli
(Valuable) değilse, onlar hikaye değil, yapılacaklar
listesidir (To-do list). Müşteriye "Login ekranının
arkasındaki stored procedure'ü yazdık" derseniz
size boş gözlerle bakar.

Müşterinin anlayacağı dilden konuşmuyorsanız, o
kartları yırtıp atın daha iyi.

Hadi beni dinlemiyorsunuz Aşık Dertli'yi dinleyin
bari:

User Story'dir bunun adı
Kullanıcıdır bunun tadı

https://www.youtube.com/watch?v=Ys3f1ghodqM
https://www.youtube.com/watch?v=Ys3f1ghodqM
https://www.youtube.com/watch?v=Ys3f1ghodqM

Bizde yazan ancak anlar kendi
User bunun neresinde?

Backend'den gelir verisi
API'dandır bunun gerisi
Hey Allah'ın şaşkın analisti
User bunun neresinde?

"Bizde herkesin yoğurt yiyişi farklıdır" diyip, her
geliştiricinin kendi kafasına göre kod yazdığı bir
ortamda çeviklikten bahsedemezsiniz.

Kolektif kod sahipliği için olmazsa olmaz şey
Kodlama Standartları'dır.

105. Kodlama Standartları ve
Kolektif Kod Sahipliği

https://www.youtube.com/watch?v=Ys3f1ghodqM

Bir dosyayı açtığınızda kodu kimin yazdığını şak
diye anlıyorsanız, orada bir problem vardır. Kod,
"Ahmet'in kodu" veya "Ayşe'nin kodu" gibi
görünmemeli; "Bizim takımın kodu" gibi
görünmeli.

Yoksa Ahmet askere gittiğinde o kodu düzeltecek
adam bulamaz, "Ahmet gelince bakar" diye
beklersiniz.

Beklemeyin. Standartlaşın.

(Sizin Ahmet inşallah askerliği kısa dönem veya
bedelli yapar.)

"Zamanımız yok, testleri sonra
yazarız" cümlesi, bir yazılım
projesinde duyabileceğiniz en
tehlikeli yalandır.

TDD (Test Driven Development)
yapmıyorsanız da en azından
yazdığınız koda bir miktar unit
test yazın be kardeşim!

106. Test Yazmayı Ertelemek

Testleri sonraya bırakmak, paraşütü uçaktan
atladıktan sonra kontrol etmeye benzer.

"Hızlı gidiyoruz" diye seviniyorsunuz ama
production'da patlayan hataların üzerine story
point koyup bunları velocity'e ekliyorsanız,
kendinizi kandırıyorsunuz.

Kalite bir lüks değildir, hızın ta kendisidir.

107. Refactoring ve 'Bulaşık
Yıkama' Analojisi

Refactoring (Yeniden Düzenleme) yapmak için
yöneticisinden "Refactoring Sprint'i" dilenen
takımlar...

Refactoring, kod geliştirme sürecinin doğal bir
parçasıdır.

 Bulaşık yıkamak için "Bulaşık Yıkama Haftası"
 ilan eden bir aşçı gördünüz mü?
 Göremezsiniz, çünkü o işin bir parçasıdır.

Kodu temizlemek için özel izin istiyorsanız, o
kodun sahibi siz değilsiniz demektir.

Her "Green" (başarılı test) sonrası kodu
temizlemeden yeni feature eklemeye kalkmayın.
Sonra o kodlar "Legacy" oldu diye ağlıyorsunuz.

"Ben sadece kendi işimi yaparım, gerisine
karışmam" diyen "Yalnız Kovboylar"... Sizin yeriniz
Agile takımlar değil, Vahşi Batı.

Agile takımında "Benim işim bitti" diye bir şey

108. Agile Takımları ve Yalnız
Kovboylar

yoktur, "Bizim işimiz bitti" vardır.

Sprint'in son günü gelmiş, arkadaşın yetişemiyor,
sen orada ayaklarını uzatıp "Benim tasklar bitti
valla" diyorsan, takım oyuncusu değil, takımın
önündeki engelsin demektir.

Silo mantığını kırmadan, yan yana oturan (veya
Zoom'da buluşan), aynı Jira projesinde aynı
Board'u kullanan ama birbirinden kopuk insanlar
topluluğuna "Takım" denmez, yan yana oturan
silolar denir.

Videoyu izlemek için görsele tıklayın!

https://www.youtube.com/watch?v=wO1QScIDZbk

109. Agile Dünyasında "Bitti"
Kavramı

"Bu iş bitti mi?" sorusuna;
"Bitti sayılır", "Localde
çalışıyor", "%99 bitti",
"Sadece testi kaldı" gibi
cevaplar veriyorsanız,
"bitti"nin ne olduğunu
anlamamışsınız demektir.

Agile dünyasında bir işin sadece iki durumu
vardır: Bitti (Done) veya Bitmedi (Not Done).

Yarım yamalak yapılmış, testi geçmemiş, deploy
edilmemiş işten "kredi" almaya çalışmayın.

Öğlen yemek yediğiniz yer yarı pişmiş tavuğu
önünüze koyuyor mu? Koymuyor. O zaman test
edilmemiş kodu da "Bitti" diye production'a
itelemeyin.

Şeffaf olun. Yetişmediyse "Yetişmedi" deyin.
Dürüstlük, "mış gibi" yapmaktan iyidir.

110. Jira, 3C Kuralı ve İletişim
Sorunu
Jira issue’larının altına destanlar yazıp, yan
masadaki (veya Zoom'daki) adamla konuşmaya
üşenenler... Size de selam olsun!

Agile dünyasında meşhur 3C kuralı vardır: Card,
Conversation, Confirmation.

Ron Jeffries der ki;

Siz o kartı (Jira issue) sözleşme metni gibi her
detayla doldurup, sonra da "Ama Jira’da
yazmıyordu, o yüzden yapmadım" diyorsanız, siz
çevik yazılım geliştirmeyi değil, "Sorumluluktan
Kaçma Sanatı" icra ediyorsunuz.

User story’ler yazmakla ilgili değil; yüzyüze
iletişim kurmakla ilgilidir.

“Writing Better User Stories” temalı eğitimler,
kitaplar bu meselenin doğru anlaşılmadığına işaret
eden, deli saçması şeylerdir.

"Kart, gerçek şey değildir; sadece bir sonraki
iletişim için verilen bir sözdür".

Şiştim artık bunlardan.
(Bakınız görsel)

Devam edecek...

